Area of Triangle Problems - page 32 of 42
Number of problems found: 837
- A Pile of salt
A Pile of salt has been stored in the shape of a cone. Mr. Terwilliker knows that the pile is 20 feet tall and 102 feet in circumference at the base. What area of the conical tarpaulin (a large sheet of material) is needed to cover the pile?
- The bus stop
The bus stop waiting room has the shape of a regular quadrilateral pyramid 4 m high with a 5 m base edge. Calculate how much m² roofing is required to cover the sheathing of three walls, taking 40% of the additional coverage.
- Triangular prism
Calculate the surface of a triangular prism with the base of an equilateral triangle with a side length of 7.5 cm and a corresponding height of 6.5 cm. Prism height is 15cm.
- Hexagon cut pyramid
Calculate the volume of a regular 6-sided cut pyramid if the bottom edge is 30 cm, the top edge is 12 cm, and the side edge length is 41 cm.
- Tent
A pyramid-shaped tent has a base square with a side length of 2 m and a height of 1.7 m. How many meters of canvas is needed to make it if we should add 10% for waste?
- Painting a column
How many kg of paint do we need to paint a column in the shape of a regular triangular prism with a base edge of 2.5 m long and a height to the base edge of 2 m, if 1 kg of paint is enough for 25 m² of paint? The column is 10 m high.
- Perpendicular 79804
A perpendicular hexagonal prism was created by machining a cube with an edge length of 8 cm. The base of the prism is created from the square wall of the original cube by separating 4 identical right triangles with overhangs of lengths 3cm and 4cm. The he
- Diameter 33361
The roof of the castle tower has the shape of a cone with a base diameter of 12 m and a height of 8 m. How many euros will we pay to cover the roof if 1m of square roofing costs 3.5 euros?
- Centimeters 6596
The jewelry box is in the shape of a four-sided prism with the base of an isosceles trapezoid with sides a=15 centimeters, b is equal to 9 centimeters, c is equal to 10 centimeters, c is equal to 7 whole 4 centimeters. How much fabric is needed to cover a
- Tropical, mild and arctic
How many percent of the Earth's surface lies in the tropical, mild, and arctic ranges? The border between the ranges is the parallel 23°27' and 66°33'.
- 9-sided pyramid
Calculate the surface area and volume of a regular nine-sided pyramid if the radius of the circle inscribed in the base measures ρ = 12 cm and the height of the pyramid is 24 cm
- Base of prism
The base of the perpendicular prism is a rectangular triangle whose legs lengths are at a 3:4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm².
- Octagonal tank
The tank has the shape of a regular octagonal prism without an upper base. The base edge has a = 3m, and the side edge b = 6m. How much metal sheet is needed to build the tank? Do not think about losses or sheet thickness.
- Prism - box
The prism's base is a rectangle with a side of 7.5 cm and 12.5 cm diagonal. The volume of the prism is V = 0.9 dm³. Calculate the surface of the prism.
- Triangular prism
The plane passing through the edge AB and the center of segment CC' of regular triangular prism ABCA'B'C' has an angle with base 30 degrees, |AB| = 15 cm. Calculate the volume of the prism.
- Diameter 44511
The tower's roof is a cone with a base diameter of 12 m and a height of 8 m. At least how many square meters of roofing are needed to cover it?
- Four-sided 27601
The house's roof has the shape of a regular four-sided pyramid 4 m high with a base edge of 100 dm. We consider 30% of the roofing in addition to the overlap. Calculate how much m² of roofing is needed to cover the roof.
- Isosceles weight
A designer weight is made from a glass cube by cutting a three-sided prism with an isosceles triangle base that is right-angled and whose arm is half the length of the cube edge. What percentage of the cube is cut off when making the weight?
- Wooden prism
Find the weight of a regular wooden triangular prism with a height equal to the base's perimeter and a figure inscribed in a circle with a radius of 6.M cm, where M is the month of your birth. The density of oak is 680 kg/m³.
- Spherical sector
The spherical sector has axial section has an angle of α = 120° in the center of the sphere, is part of a sphere with a radius r = 10 cm. Calculate the surface of this spherical sector.
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.