Octagonal pyramid

Find the volume of a regular octagonal pyramid with height v = 100 and the angle of the side edge with the base plane is α = 60°.

Correct answer:

V =  314269.6805

Step-by-step explanation:

v=100 α=60  α1=α=60°=1.0472=π/3 n=8  tan α = v/r  r=v/tan(α1)=100/tan1.047257.735  β=2 n2π=2 82 3.14160.3927 rad  sin β  = x / r  x=r sinβ=57.735 sin0.392722.0942  r2 = x2 + w2 w=r2x2=57.735222.0942253.3402  S1=2w x=253.3402 22.0942589.2557  S=2 n S1=2 8 589.25579428.0904  V=31 S v=31 9428.0904 100=314269.68053.143105

Try calculation via our triangle calculator.




Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
See also our right triangle calculator.
Tip: Our volume units converter will help you convert volume units.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: