Kombinácie bez opakovania n=49, k=6 výsledok
Kalkulačka vypočíta koľkými rôznymi spôsobmi sa dajú vybrať k prvkov z množiny n prvkov. S/bez uvažovania poradia, s/bez opakovania. Vypočíta počet variácií, permutácií, kombinácií, variácií s opakovaním a kombinácií s opakovaním:Výpočet:
Ck(n)=(kn)=k!(n−k)!n! n=49 k=6 C6(49)=(649)=6!(49−6)!49!=6⋅5⋅4⋅3⋅2⋅149⋅48⋅47⋅46⋅45⋅44=13983816
Počet kombinácií: 13983816
13983816
Trošku teórie - základy kombinatoriky
Variácie
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine (preto usporiadaná).Počet variácií vypočítame ľahko použitím kombinatorického pravidla súčinu. Ak máme napríklad množinu n=5 čísel 1,2,3,4,5 a máme urobiť variácie tretej triedy, bude ich V3(5) = 5*4*3 = 60.
Vk(n)=n(n−1)(n−2)...(n−k+1)=(n−k)!n!
n! voláme faktoriál čísla n a je to súčin prvých n prirodzených čísel. Zápis s faktoriálom je len prehľadnejší, ekvivalentný, pre výpočty je plne postačujúce používať postup vyplývajúci z kombinatorického pravidla súčinu.
Permutácie
Permutácia je synonymický názov pre variáciu n-tej triedy z n-prvkov. Je to teda každá n-prvková usporiadaná skupina vytvorená z n-prvkov. Prvky sa neopakujú a záleži na poradí prvkov v skupine.P(n)=n(n−1)(n−2)...1=n!
Typický príklad je: Máme 4 knihy a koľkými spôsobmi ich môžme usporiadať vedľa seba v poličke?
Variácie s opakovaním
Variácia k-tej triedy z n prvkov je usporiadaná k-prvková skupina vytvorených z množiny n prvkov, pričom prvky sa môžu opakovať a záleží na ich poradí. Typickým príkladom je tvorenie čísel z číslic 2,3,4,5 a zistenie ich počtu. Ich počet podľa kombinatorického pravidla súčinu vypočítame:Vk′(n)=n⋅n⋅n⋅n...n=nk
Permutácie s opakovaním
Permutácia s opakovaním je usporiadaná k-prvková skupina z n-prvkov, pričom niektoré prvky sa opakujú v skupine. Opakovanie niektorých (alebo všetkých v skupine) znižuje počet takýchto permutácií s opakovaním.Pk1k2k3...km′(n)=k1!k2!k3!...km!n!
Typický príklad je zistiť koľko je sedemmiestnych čísel utvorených z číslic 2,2,2, 6,6,6,6.
Kombinácie
Kombinácia k-tej triedy z n prvkov je neusporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a nezáleži na poradí prvkov v skupine. Neusporiadané skupiny sa v matematike volajú množiny resp. podmnožiny. Ich počet je kombinačné číslo a vypočíta sa takto:Ck(n)=(kn)=k!(n−k)!n!
Typický príklad na kombinácie je že máme 15 žiakov a máme vybrať trojice. Koľko ich bude?
Kombinácie s opakovaním
Tu vyberáme k prvkové skupiny z n prvkov, pričom nezáleží na poradí a prvky sa môžu opakovať. k je logicky väčšie ako n (inak by sme dostali kombinácie obyčajné). Ich počet je:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Vysvetlenie vzorca - počet kombinácii s opakovaním sa rovná počtu umiestnení n−1 oddeľovačov na n-1+k miest. Typický príklad je: ideme si do obchodu kúpiť 6 čokolád. V ponuke majú len 3 druhy. Koľko máme možností? k=6, n=3..
Základy kombinatoriky v slovných úlohách
- Šach
Koľko spôsobmi je možno na klasickej šachovnici so 64 poliami vybrať 3 polia tak, aby polia nemali rovnakú farbu?
- Obdĺžniky
Koľko je obdĺžnikov, ktorých dĺžky strán sú vyjadrené prirodzenými číslami a majú obsah 9821 cm²?
- Pizza
Školský prieskum zistil, že 10 z 12 žiakom chutí pizza. Ak 6 študentov je vybraných náhodne, aká je pravdepodobnosť, že všetkým 6 študentom chutí pizza?
- Počet trojuholníkov
Je daný štvorec ABCD a na každej jeho strane 6 vnútorných bodov. Určte počet všetkých trojuholníkov s vrcholmi v týchto bodoch.
- Pravdepodobnosti
Ak P(A) = 0,27 P(B) = 0,14 a P (A ∩ B) = 0,12, vypočítajte nasledovné pravdepodobnosti (zjednotenia. prienikov, opačných javov a ich kombinácií):
- Kombinatorika
V meste je 7 fontán. Vždy fungujú iba 6. Koľko je možností, ktoré môžu striekať...
- Šachy
Koľkými možnými spôsobmi sa dá začať šachová partia (prvý ťah)?
- Trojciferné čísla
Z číslic 1, 2, 3, 4, 5 utvor všetky trojciferné čísla tak, aby sa v nich neopakovala žiadna číslica a aby číslo bolo deliteľné číslom 2. Koľko je takých čísel?
- Priamky
V koľkých bodoch sa pretína 9 priamok v rovine, z ktorých 4 sú navzájom rovnobežné a z ostatných 5 žiadne dve nie sú rovnobežné (a ak predpokladáme, že každým priesečníkom prechádzajú len dve priamk)?
- Test lieku
Testujeme liek na 6 pacientoch. U všetkých liek nefunguje. Ak má liek úspešnosť 20%, aká je pravdepodobnosť, že to nevyjde?
- Osem kvádrov
Dana mala za úlohu uložiť osem kvádrov podľa týchto pravidiel: 1. Medzi dvoma červenými kvádre musí byť jeden inej farby. 2. Medzi dvoma modrými musia byť dva iné farby. 3. Medzi dvoma zelenými musia byť tri inej farby. 4. Medzi dvoma žltými kvádre musia
- Permutácie
Z koľkých prvkov môžeme zostaviť 720 permutácií bez opakovania?
- Dvojciferné
Napíšte všetky dvojciferné čísla, ktore sa dajú zostaviť z cifier 7,8,9 bez opakovania cifier. Ktoré z nich sú deliteľné b) dvomi, c) tromi d) šiestimi?
- Priamky
V rovine je daných 12 bodov, z ktorých 5 leží na jednej priamke. Koľko rôznych priamok určujú dané body?
slovné úlohy - viacej »