Linear regression calculator
This linear regression calculator uses the least squares method to find the line of best fit for a set of paired data. The line of best fit is described by the equation f(x) = Ax + B, where A is the slope of the line and B is the y-axis intercept.All you need to do is enter paired data into the text box, each pair of x and y in a separate line (row).
Also, the coefficient of correlation is calculated as the Pearson product-moment correlation coefficient (PPMCC or PCC or R). The Pearson correlation coefficient measures the strength of a linear association between two variables, where the value R = 1 means a perfect positive correlation and the value R = -1 means a perfect negative correlation.
Calculation:
Statistical file:{[2; 12], [0; 0], [5; 20], [0; 0], [7; 25], [0; 0], [11; 26], [0; 0], [15; 40]}
A = 2.5925090252708 (slope)
B = 2.14440433213 (y intercept)
R = 0.96857802117607 (correlation coefficient)
y = f(x) = Ax + B = 2.5925x+2.1444
Calculation Summary:
x | y | xy | x2 | x-mx | y-my | (x-mx)2 | (y-my)2 | (x-mx)(y-my) |
---|---|---|---|---|---|---|---|---|
2 | 12 | 24 | 4 | -2.4444444444444 | -1.6666666666667 | 5.9753086419753 | 2.7777777777778 | 4.0740740740741 |
0 | 0 | 0 | 0 | -4.4444444444444 | -13.666666666667 | 19.753086419753 | 186.77777777778 | 60.740740740741 |
5 | 20 | 100 | 25 | 0.55555555555556 | 6.3333333333333 | 0.30864197530864 | 40.111111111111 | 3.5185185185185 |
0 | 0 | 0 | 0 | -4.4444444444444 | -13.666666666667 | 19.753086419753 | 186.77777777778 | 60.740740740741 |
7 | 25 | 175 | 49 | 2.5555555555556 | 11.333333333333 | 6.5308641975309 | 128.44444444444 | 28.962962962963 |
0 | 0 | 0 | 0 | -4.4444444444444 | -13.666666666667 | 19.753086419753 | 186.77777777778 | 60.740740740741 |
11 | 26 | 286 | 121 | 6.5555555555556 | 12.333333333333 | 42.975308641975 | 152.11111111111 | 80.851851851852 |
0 | 0 | 0 | 0 | -4.4444444444444 | -13.666666666667 | 19.753086419753 | 186.77777777778 | 60.740740740741 |
15 | 40 | 600 | 225 | 10.555555555556 | 26.333333333333 | 111.41975308642 | 693.44444444444 | 277.96296296296 |
∑x = 40 | ∑y = 123 | ∑xy = 1185 | ∑x2 = 424 | mx=4.4444444444444 | my=13.666666666667 | SSX = ∑(y-my))2 = 246.22222222222 | SSY = ∑(y-my))2 = 1764 | SP = ∑(x-mx)(y-my) = 638.33333333333 |
X-data
Average (mean): μ=4.4444444444444
Absolute deviation: 40.444444444444
Mean deviation: 4.4938271604938
Minimum: 0
Maximum: 15
Variance: 27.358024691358
Standard deviation σ=5.2304899093066
Corrected sample standard deviation s=5.5477723256977
Coefficient of variation cV=1.248248773282
Signal-to-noise ratio SNR=0.80112235750148
Median: 2
Quartile Q1: 0
Quartile Q2: 2
Quartile Q3: 9
1st decile: 0 (Too few data to calculate deciles)
2nd decile: 0
3rd decile: 0
4th decile: 0
5th decile: 2
6th decile: 5
7th decile: 7
8th decile: 11
9th decile: 15
Interquartile range IQR: 9
Quartile Deviation QD: 4.5
Coefficient of Quartile Deviation CQD: 1
Lower fence: -13.5
Upper fence: 22.5
Set of outliers: {} - empty set - no outliers found
Interdecile range IDR: 15
Mode: 0 - unimodal
Geometric mean: 0
Harmonic mean: 0
Sum: 40
Sum of squares: 246.22222222222
Sum of absolute values: 40
Average absolute deviation: 4.4938271604938
Range: 15
Frequency table :
element | frequency | cumulative frequency | relative frequency | cumulative relative frequency |
---|---|---|---|---|
0 | 4 | 4 | 0.44444444444444 | 0.44444444444444 |
2 | 1 | 5 | 0.11111111111111 | 0.55555555555556 |
5 | 1 | 6 | 0.11111111111111 | 0.66666666666667 |
7 | 1 | 7 | 0.11111111111111 | 0.77777777777778 |
11 | 1 | 8 | 0.11111111111111 | 0.88888888888889 |
15 | 1 | 9 | 0.11111111111111 | 1 |
Count items: 9
Calculation of normal distribution
Statistical file(X-data):
{0, 0, 0, 0, 2, 5, 7, 11, 15}
Y-data
Average (mean): μ=13.666666666667
Absolute deviation: 112.66666666667
Mean deviation: 12.518518518519
Minimum: 0
Maximum: 40
Variance: 196
Standard deviation σ=14
Corrected sample standard deviation s=14.849242404917
Coefficient of variation cV=1.0865299320671
Signal-to-noise ratio SNR=0.92036120725868
Median: 12
Quartile Q1: 0
Quartile Q2: 12
Quartile Q3: 25.5
1st decile: 0 (Too few data to calculate deciles)
2nd decile: 0
3rd decile: 0
4th decile: 0
5th decile: 12
6th decile: 20
7th decile: 25
8th decile: 26
9th decile: 40
Interquartile range IQR: 25.5
Quartile Deviation QD: 12.75
Coefficient of Quartile Deviation CQD: 1
Lower fence: -38.25
Upper fence: 63.75
Set of outliers: {} - empty set - no outliers found
Interdecile range IDR: 40
Mode: 0 - unimodal
Geometric mean: 0
Harmonic mean: 0
Sum: 123
Sum of squares: 1764
Sum of absolute values: 123
Average absolute deviation: 12.518518518519
Range: 40
Frequency table :
element | frequency | cumulative frequency | relative frequency | cumulative relative frequency |
---|---|---|---|---|
0 | 4 | 4 | 0.44444444444444 | 0.44444444444444 |
12 | 1 | 5 | 0.11111111111111 | 0.55555555555556 |
20 | 1 | 6 | 0.11111111111111 | 0.66666666666667 |
25 | 1 | 7 | 0.11111111111111 | 0.77777777777778 |
26 | 1 | 8 | 0.11111111111111 | 0.88888888888889 |
40 | 1 | 9 | 0.11111111111111 | 1 |
Count items: 9
Calculation of normal distribution
Statistical file(Y-data):
{0, 0, 0, 0, 12, 20, 25, 26, 40}
Practice problems from statistics:
- Increase the mean
To which number should the number 4 be changed between the numbers 4,5,7, 1,0,9,7,8, -3,5 to increase these numbers' arithmetic mean by 1.25?
- 75th percentile (quartille Q3)
Find 75th percentile for 30,42,42,46,46,46,50,50,54
- Find mean
Find the mean of two numbers: -4 and 5 (the first is negative four).
- Third tests
Third periodical tests are 98, 97, 86, 94, 90, 97, 91, and 94. Find the median of her grades and interpret the result.
- Gradually 34921
We gradually measured the values of 3,8,13,10,1,13,10,5,3,9. Calculate how much is the sum of the median and average of this file from the mode of this file.
- Harmonic HM example
Find the harmonic mean of 4 and 8.
- The size 2
The size of pants sold during one business day in a department store is 32, 38, 34, 42, 36, 34, 40, 44, 32, and 34. Find the average size of the pants sold.
- The data
The data set represents the number of cars in a town given a speeding ticket daily for ten days. 2 4 5 5 7 7 8 8 8 12 What is the IQR?
- 45 percentile
Given the following data 11 15 24 33 10 35 23 25 40 What is P45?
- Decile
Find the 5.5th decile of the data: 62, 60, 37, 57, 55, 59, 57, 50, 49, 61
- The median 2
Here is a list of numbers: 9.9, 5.9, 3.6, 6.2, 8.9, 0.7, 4.4, 6.7, 9.9, 0.7 State the median. Give your answer as a decimal.
more math problems »