David number
Jane and David train in the addition of decimal numbers so that each of them will write a single number, and these two numbers will then be added up. The last example was 11.11. David's number also had the same number of digits before and after a point. Jane's number has the same property. David's number has different digits. Jane's number had exactly two digits the same. Find the largest possible number David could write.
  Final Answer:

You need to know the following knowledge to solve this word math problem:
arithmeticbasic operations and conceptsnumbersthemes, topicsGrade of the word problem
Related math problems and questions:
- Single-digit  7302   Four different digits were on the four cards, one of which was zero. Vojta composed the largest four-digit number from the cards, and Martin the smallest four-digit number. Adam wrote the difference between Vojtov's and Martin's numbers on the board. Then Four different digits were on the four cards, one of which was zero. Vojta composed the largest four-digit number from the cards, and Martin the smallest four-digit number. Adam wrote the difference between Vojtov's and Martin's numbers on the board. Then
- Four families  Four families were on a joint trip. The first family had three siblings: Alica, Betka, and Cyril. In the second family were four siblings: David, Erik, Filip, and Gabika. In the third family, there were two siblings, Hugo and Iveta. Three siblings in the Four families were on a joint trip. The first family had three siblings: Alica, Betka, and Cyril. In the second family were four siblings: David, Erik, Filip, and Gabika. In the third family, there were two siblings, Hugo and Iveta. Three siblings in the
- Three-digit 80768  Nikola had one three-digit and one two-digit number written in her notebook. Each of these numbers was made up of different digits. The difference in Nicole's numbers was 976. What was their sum? Nikola had one three-digit and one two-digit number written in her notebook. Each of these numbers was made up of different digits. The difference in Nicole's numbers was 976. What was their sum?
- SKMO  Petra had written natural numbers from 1 to 9. She added two of these numbers, deleted them, and wrote the resulting sum instead of the summaries. She thus had eight numbers written down, which she managed to divide into two groups with the same product. Petra had written natural numbers from 1 to 9. She added two of these numbers, deleted them, and wrote the resulting sum instead of the summaries. She thus had eight numbers written down, which she managed to divide into two groups with the same product.
- Digits of age  The product of the digits of Andrew's age six years ago is the same and not equal to 0. Andrew's age is also the youngest possible age with these two conditions. After how many years will the product of the digits of Andrew's age again be the same as toda The product of the digits of Andrew's age six years ago is the same and not equal to 0. Andrew's age is also the youngest possible age with these two conditions. After how many years will the product of the digits of Andrew's age again be the same as toda
- The number - digits  The vortex of the three given digits formed different three-digit numbers. When she added up all these numbers, she published 1554. What numbers did Vierka use? The vortex of the three given digits formed different three-digit numbers. When she added up all these numbers, she published 1554. What numbers did Vierka use?
- Number train  The numbers 1,2,3,4,5,6,7,8, and 9 traveled by train. The train had three cars, and each was carrying just three numbers. No. 1 rode in the first carriage, and in the last were all odd numbers. The conductor calculated the sum of the numbers in the first, The numbers 1,2,3,4,5,6,7,8, and 9 traveled by train. The train had three cars, and each was carrying just three numbers. No. 1 rode in the first carriage, and in the last were all odd numbers. The conductor calculated the sum of the numbers in the first,
