Tickets

Tickets to the zoo cost $4 for children, $5 for teenagers and $6 for adults. In the high season, 1200 people come to the zoo every day. On a certain day, the total revenue at the zoo was $5300. For every 3 teenagers, 8 children went to the zoo. How many teenagers, children, and adults went to the zoo?

Result

a =  100
c =  800
t =  300

Solution:


6a + 5t + 4c = 5300
a + t + c = 1200
(8/3)*t = c

6a+4c+5t = 5300
a+c+t = 1200
3c-8t = 0

a = 100
c = 800
t = 300

Calculated by our linear equations calculator.



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Do you have a system of equations and looking for calculator system of linear equations?

Following knowledge from mathematics are needed to solve this word math problem:

Next similar math problems:

  1. Children
    children_3 The group has 42 children. There are 4 more boys than girls. How many boys and girls are in the group?
  2. Guppies for sale
    guppies Paul had a bowl of guppies for sale. Four customers were milling around the store. 1. Rod told paul - I'll take half the guppies in the bowl, plus had a guppy. 2. Heather said - I'll take half of what you have, plus half a guppy. The third customer, Na
  3. Elimination method
    rovnice_1 Solve system of linear equations by elimination method: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  4. At the
    family At the presentation of the travelers came three times as many men than women. When eight men left with their partners, there were five times more men than women at the presentation. How many were men and women originally?
  5. Three unknowns
    matrix_1 Solve the system of linear equations with three unknowns: A + B + C = 14 B - A - C = 4 2A - B + C = 0
  6. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  7. Legs
    rak Cancer has 5 pairs of legs. The insect has 6 legs. 60 animals have a total of 500 legs. How much more are cancers than insects?
  8. Sheep and cows
    sheep_4 There are only sheep and cows on the farm. Sheep is eight more than cows. The number of cows is half the number of sheep. How many animals live on the farm?
  9. Linsys2
    linear_eq_3 Solve two equations with two unknowns: 400x+120y=147.2 350x+200y=144
  10. Three workshops
    workers_24 There are 2743 people working in three workshops. In the second workshop works 140 people more than in the first and in third works 4.2 times more than the second one. How many people work in each workshop?
  11. Adding
    eq1 Divide number 135 into two additions so that one adds 30 more than 2/5 of the other add. Write the bigger one.
  12. Balls
    kulicky Michal said to Martin: give me one ball and I'll have twice as you. Martin said: give me 4 and we will have equally. How many balls each have?
  13. Father 7
    family_8 Father is 6 times older than his son. After 4 years, the father will only be 4 times older. What are their present ages?
  14. Rectangle Anton
    anton_rec Difference between length and width of the rectangle is 8. Length is 3-times larger than the width. Calculate the dimensions of the rectangle.
  15. A fisherman
    worms A fisherman buys carnivores to fish. He could buy either 6 larvae and 4 worms for $ 132 or 4 larvae and 7 worms per $ 127. What is the price of larvae and worms? Argue the answer.
  16. Lee is
    clock-night-schr_15 Lee is 8 years more than twice Park's age, 4 years ago, Lee was three times as old. How old was Lee 4 years ago?
  17. Vegan shop
    zemiaky_2 To the shops brought together 23.2 kg of goods, fruits, vegetables and nuts. fruit was 4.7 kg more than vegetables, nuts was 1.5 kg less than the fruit. Determine the amount of fruits, vegetables and nuts.