Geometric sequence

In the geometric sequence, is a4 = 20 a9 = -160. Calculate the first member a1 and quotient q.

Correct answer:

q =  -1.5157
a1 =  -5.7435

Step-by-step explanation:

a4=20 a9=160  a9 = q5 a4  q = 5a9/a4 q<0 +++ q=5160/20=1.5157
a4=q3 a1  a1=a4/q3=20/(1.5157)35.7435   Verifying Solution:   A4=a1 q3=(5.7435) (1.5157)3=20 A9=a1 q8=(5.7435) (1.5157)8=160a_{4} = q^3 \cdot \ a_{1} \ \\ \ \\ a_{1} = a_{4}/q^3 = 20/(-1.5157)^3 \doteq -5.7435 \ \\ \ \\ \text{ Verifying Solution: } \ \\ \ \\ A_{4} = a_{1} \cdot \ q^3 = (-5.7435) \cdot \ (-1.5157)^3 = 20 \ \\ A_{9} = a_{1} \cdot \ q^8 = (-5.7435) \cdot \ (-1.5157)^8 = -160



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Do you have a system of equations and are looking for calculator system of linear equations?

You need to know the following knowledge to solve this word math problem:

Related math problems and questions: