Consumption 17823
The roof has the shape of a regular hexagonal pyramid shell with a wall height of v = 5 m and a base edge of a = 4 m. Calculate the consumption of sheet metal to cover the roof, assuming 15% losses.
Correct answer:

Tips for related online calculators
Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.
Our percentage calculator will help you quickly calculate various typical tasks with percentages.
See also our right triangle calculator.
See also our trigonometric triangle calculator.
Our percentage calculator will help you quickly calculate various typical tasks with percentages.
See also our right triangle calculator.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
Units of physical quantities:
Grade of the word problem:
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Consumption 69174
The tower's roof has the shape of the shell of a rotating cone with a base diameter of 4.3 m. The deviation of the side from the plane of the base is 36°. Calculate the consumption of sheet metal to cover the roof, assuming 8% for waste.
- Four-sided 7910
The roof of the recreation cottage has the shape of a regular four-sided pyramid with a height of 8m and a base edge of 4m. How much ℅ went to folds and joints, and 75.9 square meters of sheet metal were used to cover the roof?
- Tower
The top of the tower is a regular hexagonal pyramid with a base edge 6.1 meters long and a height 11.7 meters. How many m² of the sheet is required to cover the top of the tower? We must add 9% of metal for waste.
- Top of the tower
The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m. The pyramid height is 1.6 m. How many square meters of sheet metal are needed to cover the top of the tower if 15% extra sheet metal is needed for join
- Four-sided 5957
How much m² of the galvanized sheet is used to cover the roof of the tower, which has the shape of a four-sided pyramid, whose base edge is 6 m long? The height of the tower is 9m. When covering, is 5% metal waste expected?
- Four-sided 15613
The turret has the shape of a regular four-sided pyramid with a base edge 0.8 m long. The height of the turret is 1.2 m. How many square meters are needed to cover it, counting the extra 10% sheet metal waste?
- Church roof 2
The roof has the shape of a rotating cone shell with a base diameter of 6 m and a height of 2.5 m. How much money (CZK) will cost the roof cover sheet if 1 m² of metal sheet costs 152 CZK and if you need 15% extra for joints, overlays, and waste?
- Regular hexagonal pyramid
Calculate the height of a regular hexagonal pyramid with a base edge of 5 cm and a wall height of w = 20cm. Sketch a picture.
- Wall height
Calculate the height of a regular hexagonal pyramid with a base edge of 5 cm and a wall height w = 20 cm.
- Pyramid-shaped 30191
Above the pavilion, with a square floor plan with side a = 12 m, is a pyramid-shaped roof with a height of 4.5 m. How many m² of sheet metal is needed to cover this roof?
- The roof
The tower's roof has the shape of a regular quadrangular pyramid, the base edge of which is 11 m long, and the side wall of the animal with the base at an angle of 57°. Calculate how much roofing we need to cover the entire roof if we count on 15% waste.
- Roof cover
Above the pavilion with a square ground plan with a side length of a = 12 m is a pyramid-shaped roof with a height v = 4.5 m. Calculate how much m² of sheet metal is needed to cover this roof; if 5.5% of the sheet, we must add for joints and waste.
- Hexagonal pyramid
Please calculate the height of a regular hexagonal pyramid with a base edge of 5cm and a wall height of w = 20cm. Please sketch a picture.
- Four-sided 7833
The tower has the shape of a regular four-sided pyramid with a base edge of 0.8 m. The height of the tower is 1.2 meters. How many square meters of sheet metal is needed for coverage if we count eight percent for joints and overlap?
- Four-sided 27601
The house's roof has the shape of a regular four-sided pyramid 4 m high with a base edge of 100 dm. We consider 30% of the roofing in addition to the overlap. Calculate how much m² of roofing is needed to cover the roof.
- Quadrilateral 33143
The roof of the prefabricated holiday cottage has the shape of a regular quadrilateral pyramid with a length of the base edge of 8 meters and a height of 9 m. How many square meters of cardboard are needed to cover the roof?
- Hexagonal pyramid
Regular hexagonal pyramid has dimensions: length edge of the base a = 1.8 dm and the height of the pyramid = 2.4 dm. Calculate the surface area and volume of a pyramid.