# Top of the tower

The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joints, overlap and waste?

### Correct answer:

**Showing 2 comments:**

**Mathematican**

We need to find the apothem (a) of the base first, so then you can find the height of a triangle of the face since you don't have this, just the height of the pyramid.

0.6

0.6

^{2}+ a^{2}= 1.2^{2}then this a is the apothem, and you can use to find the height of "triangle a face". So h_{2}^{2}= 1.6^{2}+ a^{2}. And now you do what it is written with these new values.**Mathematican**

Thank Luiza. We just corrected this pyramid problem. So h is the height of the whole pyramid, h2 is wall height and h1 is now the height of the base triangles (hexagon is composed of six equilateral triangles).

Tips to related online calculators

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Tower

The top of the tower is a regular hexagonal pyramid with base edge 6.1 meters long and a height 11.7 meters. How many m² of the sheet is required to cover the top of the tower if we count 9% of the sheet waste? - Roof cover

Above the pavilion with a square ground plan with a side length of a = 12 m is a pyramid-shaped roof with a height v = 4.5 m. Calculate how much m² of sheet metal is needed to cover this roof if 5.5% of the sheet we must add for joints and waste. - Church roof 2

The roof has the shape of a rotating cone shell with a base diameter of 6 m and a height of 2.5 m. How many monez (CZK) will cost the roof cover sheet if 1 m² of metal sheet costs 152 CZK and if you need 15% extra for joints, overlays and waste? - Octagonal tank

The tank has the shape of a regular octagonal prism without an upper base. The base edge has a = 3m, the side edge b = 6m. How much metal sheet is needed to build the tank? Do not think about losses or sheet thickness. - Wall height

Calculate the height of a regular hexagonal pyramid with a base edge of 5 cm and a wall height w = 20 cm. - Church roof

The roof of the church tower has the shape of a regular tetrahedral pyramid with base edge length 5.4 meters and a height 5 m. It was found that needs to be corrected 27% covering of the roof area. What amount of material will be required? - Hexagonal pyramid

Calculate the volume and the surface of a regular hexagonal pyramid with a base edge length of 3 cm and a height of 5 cm. - Regular quadrangular pyramid

How many square meters are needed to cover the shape of a regular quadrangular pyramid base edge 10 meters if the deviation lateral edges from the base plane are 68°? Calculate waste 10%. - Hexagonal pyramid

Please calculate the height of a regular hexagonal pyramid with a base edge of 5cm and a wall height of w = 20cm. Please sketch a picture. - The roof

The roof of the tower has the shape of a regular quadrangular pyramid, the base edge of which is 11 m long and the side wall of the animal with the base an angle of 57°. Calculate how much roofing we need to cover the entire roof, if we count on 15% waste - Hexagonal pyramid

Regular hexagonal pyramid has dimensions: length edge of the base a = 1.8 dm and the height of the pyramid = 2.4 dm. Calculate the surface area and volume of a pyramid. - Hexagonal prism

The base of the prism is a regular hexagon consisting of six triangles with side a = 12 cm and height va = 10.4 cm. The prism height is 5 cm. Find the volume and surface of the prism. - The observatory

The dome of the hemisphere-shaped observatory is 5.4 meters high. How many square meters of sheet metal needs to be covered to cover it, and 15 percent must be added to the minimum amount due to joints and waste? - The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m² of cloth we need to make the tent if we have to add 7% of the seams? How many m³ of air will be in the tent? - Triangular pyramid

A regular tetrahedron is a triangular pyramid whose base and walls are identical equilateral triangles. Calculate the height of this body if the edge length is a = 8 cm - Hexagon

Calculate the regular hexagonal prism's surface whose base edge a = 12cm and side edge b = 3 dm. - Hexagonal pyramid

Find the volume of a regular hexagonal pyramid, the base edge of which is 12 cm long and the side edge 20 cm.