# Tangents to ellipse

Find the magnitude of the angle at which the ellipse x

^{2}+ 5 y^{2}= 5 is visible from the point P[5, 1] .**Correct result:****Showing 0 comments:**

Tips to related online calculators

For Basic calculations in analytic geometry is helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.

Looking for help with calculating roots of a quadratic equation?

Most natural application of trigonometry and trigonometric functions is a calculation of the triangles. Common and less common calculations of different types of triangles offers our triangle calculator. Word trigonometry comes from Greek and literally means triangle calculation.

Looking for help with calculating roots of a quadratic equation?

Most natural application of trigonometry and trigonometric functions is a calculation of the triangles. Common and less common calculations of different types of triangles offers our triangle calculator. Word trigonometry comes from Greek and literally means triangle calculation.

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Next similar math problems:

- Find the 15

Find the tangent line of the ellipse 9 x^{2}+ 16 y^{2}= 144 that has the slope k = -1 - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - Ellipse

Ellipse is expressed by equation 9x^{2}+ 25y^{2}- 54x - 100y - 44 = 0. Find the length of primary and secondary axes, eccentricity, and coordinates of the center of the ellipse. - Find the 5

Find the equation of the circle with center at (1,20), which touches the line 8x+5y-19=0 - Equation of circle 2

Find the equation of a circle which touches the axis of y at a distance 4 from the origin and cuts off an intercept of length 6 on the axis x. - Sphere equation

Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1). - Power line pole

From point A, the power line pole is seen at an angle of 18 degrees. From point B to which we get when going from point A 30m away from the column at an angle of 10 degrees. Find the height of the power pole. - Right triangle from axes

A line segment has its ends on the coordinate axes and forms with them a triangle of area equal to 36 square units. The segment passes through the point ( 5,2). What is the slope of the line segment? - On a line

On a line p : 3 x - 4 y - 3 = 0, determine the point C equidistant from points A[4, 4] and B[7, 1]. - Curve and line

The equation of a curve C is y=2x² -8x+9 and the equation of a line L is x+ y=3 (1) Find the x co-ordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C? - Parametric form

Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. .. - Angle

A straight line p given by the equation ?. Calculate the size of angle in degrees between line p and y-axis. - Center of line segment

Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is . - Prove

Prove that k1 and k2 is the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x^{2}+y^{2}+2x+4y+1=0 k2: x^{2}+y^{2}-8x+6y+9=0 - Ratio iso triangle

The ratio of the sides of an isosceles triangle is 7:6:7 Find the base angle to the nearest answer correct to 3 significant figure. - Center

In the triangle ABC is point D[1,-2,6], which is the center of the |BC| and point G[8,1,-3], which is the center of gravity of the triangle. Find the coordinates of the vertex A[x,y,z]. - General line equations

In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the line is given by the slope form: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) t