Parametric form

Calculate the distance of point A [2,1] from the line p:
X = -1 + 3 t
Y = 5-4 t
Line p has a parametric form of the line equation. ..

Correct answer:

x =  0

Step-by-step explanation:




Did you find an error or inaccuracy? Feel free to write us. Thank you!



avatar




Tips to related online calculators
Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Our vector sum calculator can add two vectors given by their magnitudes and by included angle.
Do you want to convert length units?
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions:

  • Perpendicular projection
    lines Determine the distance of a point B[1, -3] from the perpendicular projection of a point A[3, -2] on a straight line 2 x + y + 1 = 0.
  • Find the 5
    distance-between-point-line Find the equation of the circle with center at (1,20), which touches the line 8x+5y-19=0
  • Calculate 6
    distance_point_line Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].
  • Three points 2
    vectors_sum0 The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB, and DC is parallel to AB. Calculate the coordinates of D.
  • Three points
    triangle_rt_taznice Three points K (-3; 2), L (-1; 4), M (3, -4) are given. Find out: (a) whether the triangle KLM is right b) calculate the length of the line to the k side c) write the coordinates of the vector LM d) write the directional form of the KM side e) write the d
  • Angle of the body diagonals
    body_diagonals_angle Using vector dot product calculate the angle of the body diagonals of the cube.
  • Parametric equations
    vectors Write the parametric equations of height hc in triangle ABC: A = [5; 6], B = [- 2; 4], C = [6; -1]
  • Space vectors 3D
    vectors The vectors u = (1; 3; -4), v = (0; 1; 1) are given. Find the size of these vectors, calculate the angle of the vectors, the distance between the vectors.
  • Scalar product
    vectors_sum0 Calculate the scalar product of two vectors: (2.5) (-1, -4)
  • Distance problem
    linear_eq A=(x, x) B=(1,4) Distance AB=√5, find x;
  • 3d vector component
    vectors The vector u = (3.9, u3) and the length of the vector u is 12. What is is u3?
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Vector perpendicular
    3dperpendicular Find the vector a = (2, y, z) so that a⊥ b and a ⊥ c where b = (-1, 4, 2) and c = (3, -3, -1)
  • Parametric equation
    lines Point A [6; -2]. Point B = [-3; 1] Write the parametric equation of the line BA so that t belongs to the closed interval 0; 3
  • Triangle
    sedlo Plane coordinates of vertices: K[11, -10] L[10, 12] M[1, 3] give Triangle KLM. Calculate its area and its interior angles.
  • Center of line segment
    stredna_priecka Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is from interval <0,1>.
  • Vector v4
    scalar_product Find the vector v4 perpendicular to vectors v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) and v3 = (0, 0, 1, 1)