# General line equations

In all examples, write the GENERAL EQUATION OF a line that is given in some way.

A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p

B) the slope form gives the line: y = 3x - 1

C) the line is given by two points: A [3; -3], B [-5; 2]

D) the line intersects the y-axis at point 0; 6 and has a slope k = 2

A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p

B) the slope form gives the line: y = 3x - 1

C) the line is given by two points: A [3; -3], B [-5; 2]

D) the line intersects the y-axis at point 0; 6 and has a slope k = 2

## Correct answer:

Tips for related online calculators

The line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.

### You need to know the following knowledge to solve this word math problem:

### Grade of the word problem:

## Related math problems and questions:

- Line intersect segment

Decide whether the line p : x + 2 y - 7 = 0 intersects the line segment given by points A[1, 1] and B[5, 3] - Perpendicular 82994

The straight line p is given by the formula y = 1/2 x - 1 . The line q is perpendicular to the line p and passes through the point A [1; 5]. Determine the y-coordinate of the point that intersects the line q with the y-axis. - Circle

Write the equation of a circle that passes through the point [0,6] and touches the X-axis point [5,0]: (x-x_S)²+(y-y_S)²=r² - Circle - analytics geometry

Write the equation of the circle that passes through the points Q[3.5] R[2.6] and has its center on the line 2x+3y-4=0.

- Quadratic function

It is given a quadratic function y = -4x²+5x+c with an unknown coefficient c. Determine the smallest integer c for which the graph of f intersects the x-axis at two different points. - Geometry: 78014

Good day, Even though it is a trivial task, I don’t know how to deal with it. This is analytic geometry: Find all integers a, b, and c such that the line given by the equation ax+by=c passes through the points [4,3] and [−2,1]. Thank you for your answer - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].