Coordinates of line points
I have a point A=[2,1] and a line y+x-5=0. How do I determine the coordinates of point A', which is the image of point A according to the given straight line?
Correct answer:

Tips for related online calculators
The line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
You need to know the following knowledge to solve this word math problem:
geometryalgebraarithmeticplanimetricsGrade of the word problem
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Calculate 8
Calculate the coordinates of point B axially symmetrical with point A[-1, -3] along a straight line p : x + y - 2 = 0.
- Perpendicular projection
Determine the distance of point B[1, -3] from the perpendicular projection of point A[3, -2] on a straight line 2 x + y + 1 = 0.
- Expression 68414
The expression 3x - [2 - (2x - 1) + x] is given. Determine for which number x the expression is equal to 0.
- Perpendicular 82994
The straight line p is given by the formula y = 1/2 x - 1 . The line q is perpendicular to the line p and passes through the point A [1; 5]. Determine the y-coordinate of the point that intersects the line q with the y-axis.
- Determine 82478
Determine the equation of the parabola that has the point F = [3,2] as its focus and the line x+y+1=0 as its shift line.
- Coordinates 83025
Given are points A [1;a2;a3], B [3;-4;-1], C [-3;-1;8]. Points A, B, and C lie in a straight line. Calculate the coordinates a2, a3
- Axial symmetry
Find the image A' of point A [1,2] in axial symmetry with the axis p: x = -1 + 3t, y = -2 + t (t = are a real number)