# Axial cut

The cone surface is 388.84 cm

^{2}, the axial cut is an equilateral triangle. Find the cone volume.**Correct result:****Showing 0 comments:**

Tips to related online calculators

Do you want to convert length units?

Tip: Our volume units converter will help you with the conversion of volume units.

See also our trigonometric triangle calculator.

Pythagorean theorem is the base for the right triangle calculator.

Tip: Our volume units converter will help you with the conversion of volume units.

See also our trigonometric triangle calculator.

Pythagorean theorem is the base for the right triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Axial section of the cone

The axial section of the cone is an isosceles triangle in which the ratio of cone diameter to cone side is 2: 3. Calculate its volume if you know its area is 314 cm square. - Triangular prism - regular

The regular triangular prism is 7 cm high. Its base is an equilateral triangle whose height is 3 cm. Calculate the surface and volume of this prism. - Cone side

Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side. - Top of the tower

The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m, the pyramid height is 1.6 m. How many square meters of sheet metal is needed to cover the top of the tower if 15% extra sheet metal is needed for joint - Axial cut of a rectangle

Calculate the volume and surface of the cylinder whose axial cut is a rectangle 15 cm wide with a diagonal of 25 cm long. - Base of prism

The base of the perpendicular prism is a rectangular triangle whose legs length are at a 3: 4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm^{2}. - Cube diagonals

Determine the volume and surface area of the cube if you know the length of the body diagonal u = 216 cm. - The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m^{2}of cloth we need to make the tent if we have to add 7% of the seams? How many m^{3}of air will be in the tent? - Cone A2V

Surface of cone in the plane is a circular arc with central angle of 126° and area 415 cm^{2}. Calculate the volume of a cone. - The diagram 2

The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 cm^{2}. Calculate correct to 3 significant figures: *Base Radius *Height *Volume of the cone - Cone container

Rotary cone-shaped container has a volume 1000 cubic cm and a height 12 cm. Calculate how much metal we need for making this package. - Cuboid diagonals

The cuboid has dimensions of 15, 20 and 40 cm. Calculate its volume and surface, the length of the body diagonal and the lengths of all three wall diagonals. - Tetrahedral pyramid

A regular tetrahedral pyramid is given. Base edge length a = 6.5 cm, side edge s = 7.5 cm. Calculate the volume and the area of its face (side area). - Rotary bodies

The rotating cone and the rotary cylinder have the same volume 180 cm^{3}and the same height v = 15 cm. Which of these two bodies has a larger surface area? - Lateral surface area

The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm. - Triangular prism,

The regular triangular prism, whose edges are identical, has a surface of 2514 cm ^ 2 (square). Find the volume of this body in cm^{3}(l). - Triangular prism

The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm^{3}? And the surface cm^{2}?