# Star equation

Write digits instead of stars so that the sum of the written digits is odd and is true equality:

42 · ∗8 = 2 ∗∗∗

42 · ∗8 = 2 ∗∗∗

### Correct answer:

Tips to related online calculators

Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Z7-I-4 stars 4949

Write instead of stars digits so the next write of product of the two numbers to be valid: ∗ ∗ ∗ · ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 9 4 9 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗ ∗ - Twos

Vojta started writing the number of this year 2019202020192020 into the workbook. .. And so he kept going. When he wrote 2020 digits, he no longer enjoyed it. How many twos did he write? - All pairs

Determine all pairs (m, n) of natural numbers for which is true: m s (n) = n s (m) = 70, where s (a) denotes the digit sum of the natural number a. - Six-digit primes

Find all six-digit prime numbers that contain each one of digits 1,2,4,5,7, and 8 just once. How many are they? - MO Z6-6-1

Write integers greater than 1 to the blanks in the following figure so that each darker box was a product of the numbers in the neighboring lighter boxes. What number is in the middlebox? - Alarm clock

The old watchmaker has a unique digital alarm in its collection that rings whenever the sum of digits of the alarm is equal to 21. Find out when the alarm clock will ring. What is their number? List all options . .. - Clubhouse

There were only chairs and table in the clubhouse. Each chair had four legs, and the table was triple. Scouts came to the clubhouse. Everyone sat on their chair, two chairs were left unoccupied, and the number of legs in the room was 101. How many chairs - Decide

The rectangle is divided into seven fields. On each box is to write just one of the numbers 1, 2 and 3. Mirek argue that it can be done so that the sum of the two numbers written next to each other was always different. Zuzana (Susan) instead argue that i - David number

Jana and David train the addition of the decimal numbers so that each of them will write a single number and these two numbers then add up. The last example was 11.11. David's number had the same number of digits before the decimal point, the Jane's numbe - Z9-I-4

Kate thought a five-digit integer. She wrote the sum of this number and its half at the first line to the workbook. On the second line wrote a total of this number and its one fifth. On the third row, she wrote a sum of this number and its one nines. Fina - Number train

The numbers 1,2,3,4,5,6,7,8 and 9 traveled by train. The train had three cars and each was carrying just three numbers. No. 1 rode in the first carriage, and in the last carriage was all odd numbers. The conductor calculated sum of the numbers in the firs - Z9–I–4 MO 2017

Numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 were prepared for a train journey with three wagons. They wanted to sit out so that three numbers were seated in each carriage and the largest of each of the three was equal to the sum of the remaining two. The conduct - Last digit

What is the last number of 2016 power of 2017 - Meadow

On the meadow grazing horses, cows, and sheep, together with less than 200. If cows were 45 times more, horses 60 times more, and sheep 35 times more than there are now, their numbers would equally. How many horses, cows, and sheep are on the meadow toget - Mr. Product

The product of the ages of all of Mr. Product children's is 1408. The age of the youngest child is equal to half the age of the oldest child. How many children does Mr. Product have and how old are they? - Octahedron - sum

On each wall of a regular octahedron is written one of the numbers 1, 2, 3, 4, 5, 6, 7 and 8, wherein on different sides are different numbers. For each wall John make the sum of the numbers written of three adjacent walls. Thus got eight sums, which also - Year 2018

The product of the three positive numbers is 2018. What are the numbers?