Six terms

Find the first six terms of the sequence
a1 = -3, an = 2 * an-1

Correct result:

a1 =  -3
a2 =  -6
a3 =  -12
a4 =  -24
a5 =  -48
a6 =  -96

Solution:

a1=3a_{1}=-3
a2=2 a1=2 (3)=6a_{2}=2 \cdot \ a_{1}=2 \cdot \ (-3)=-6
a3=2 a2=2 (6)=12a_{3}=2 \cdot \ a_{2}=2 \cdot \ (-6)=-12
a4=2 a3=2 (12)=24a_{4}=2 \cdot \ a_{3}=2 \cdot \ (-12)=-24
a5=2 a4=2 (24)=48a_{5}=2 \cdot \ a_{4}=2 \cdot \ (-24)=-48
a6=2 a5=2 (48)=96a_{6}=2 \cdot \ a_{5}=2 \cdot \ (-48)=-96



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




You need to know the following knowledge to solve this word math problem:

Next similar math problems:

  • Geometric progressiob
    eq2 If the sum of four consective terms of geometric progression is 80 and arithmetic mean of second and fourth term is 30 then find terms?
  • 6 terms
    arithmet_seq Find the first six terms of the sequence. a1 = 7, an = an-1 + 6
  • Find the 21
    seq_sum Find the sum of the six terms of the finite geometric sequence 96, -48, 24, -12
  • Geometric sequence 4
    Koch_Snowflake_Triangles It is given geometric sequence a3 = 7 and a12 = 3. Calculate s23 (= sum of the first 23 members of the sequence).
  • Geometric sequence 5
    sequence About members of geometric sequence we know: ? ? Calculate a1 (first member) and q (common ratio or q-coefficient)
  • Sum 1-6
    seq_sum Find the sum of the geometric progression 3, 15, 75,… to six terms.
  • GP - three members
    progression_ao The second and third of a geometric progression are 24 and 12(c+1) respectively, given that the sum of the first three terms of progression is 76 determine value of c
  • Geometric progression 2
    exp_x There is geometric sequence with a1=5.7 and quotient q=-2.5. Calculate a17.
  • Geometric sequence
    cralici In the geometric sequence is a4 = 20 a9 = -160. Calculate the first member a1 and quotient q.
  • Geometric sequence 3
    sequence In geometric sequence is a8 = 312500; a11= 39062500; sn=1953124. Calculate the first item a1, quotient q and n - number of members by their sum s_n.
  • Sequence
    mandlebrot Find the common ratio of the sequence -3, -1.5, -0.75, -0.375, -0.1875. Ratio write as decimal number rounded to tenth.
  • Five element
    sequence_geo The geometric sequence is given by quotient q = 1/2 and the sum of the first six members S6 = 63. Find the fifth element a5.
  • Geometric progression
    exp_1 In geometric progression, a1 = 7, q = 5. Find the condition for n to sum first n members is: sn≤217.
  • Sequence
    seq Calculate what member of the sequence specified by ? has value 86.
  • Sum of GP members
    exponentialFexsDecay Determine the sum of the GP 30, 6, 1.2, to 5 terms. What is the sum of all terms (to infinity)?
  • Geometric seq
    eq222_1 Find the third member of geometric progression if a1 + a2 = 36 and a1 + a3 = 90. Calculate its quotient.
  • Terms of GP
    exp_growth What is the 6th term of the GP 9, 81, 729,. .. ?