Ellipse

Ellipse is expressed by equation 9x2 + 25y2 - 54x - 100y - 44 = 0. Find the length of primary and secondary axes, eccentricity, and coordinates of the center of the ellipse.

Correct result:

o1 =  10
o2 =  6
x0 =  3
y0 =  2
e =  4

Solution:

(xx0a)2+(yy0b)2=1 (9x254x)+(25y2100y)=44 9 (x26x)+25(y24y)=44  x26x+9=(x3)2 y24y+4=(y2)2  9 (x26x+9)+25(y24y+4)=44+9 9+4 25  9 (x3)2+25 (y2)2=225 9225 (x3)2+25225 (y2)2=1  a=2259=5 b=22525=3  o1=2 a=2 5=10
o2=2 b=2 3=6
x0=3
y0=2
e=a2b2=5232=4



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
For Basic calculations in analytic geometry is a helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Find the 15
    ellipseTangent Find the tangent line of the ellipse 9 x2 + 16 y2 = 144 that has the slope k = -1
  • Intersections 3
    intersect_circles Find the intersections of the circles x2 + y2 + 6 x - 10 y + 9 = 0 and x2 + y2 + 18 x + 4 y + 21 = 0
  • Equation
    function Eequation f(x) = 0 has roots x1 = 64, x2 = 100, x3 = 25, x4 = 49. How many roots have equation f(x2) = 0 ?
  • Sphere equation
    sphere2 Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
  • Tangents to ellipse
    ellipseTangent Find the magnitude of the angle at which the ellipse x2 + 5 y2 = 5 is visible from the point P[5, 1] .
  • Circle
    kruznica The circle touches two parallel lines p and q, and its center lies on line a, which is the secant of lines p and q. Write the equation of the circle and determine the coordinates of the center and radius. p: x-10 = 0 q: -x-19 = 0 a: 9x-4y+5 = 0
  • Sphere from tree points
    sphere2_1 Equation of sphere with three point (a,0,0), (0, a,0), (0,0, a) and center lies on plane x+y+z=a
  • Isosceles triangle 9
    iso_triangle Given an isosceles triangle ABC where AB= AC. The perimeter is 64cm, and the altitude is 24cm. Find the area of the isosceles triangle.
  • Prove
    two_circles_1 Prove that k1 and k2 are the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x2+y2+2x+4y+1=0 k2: x2+y2-8x+6y+9=0
  • The raw
    statistics The raw data presented here are the scores (out of 100 marks) of a market survey regarding the acceptability of new product launched by a company for random sample of 50 respondents: 40 45 41 45 45 30 30 8 48 25 26 9 23 24 26 29 8 40 41 42 39 35 18 25 35
  • Find parameters
    circle_axes_1 Find parameters of the circle in the plane - coordinates of center and radius: ?
  • Isosceles triangle
    rr_triangle3 In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C.
  • Trapezoid
    lichobeznik_3 trapezoid ABCD a = 35 m, b=28 m c = 11 m and d = 14 m. How to calculate its area?
  • Reverse Pythagorean theorem
    pytagors Given are lengths of the sides of the triangles. Decide which one is rectangular: Δ ABC: 77 dm, 85 dm, 36 dm ? Δ DEF: 55 dm, 82 dm, 61 dm ? Δ GHI: 24 mm, 25 mm, 7 mm ? Δ JKL: 32 dm, 51 dm, 82 dm ? Δ MNO: 51 dm, 45 dm, 24 dm ?
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Square
    percent Suppose the square's sides' length decreases by a 25% decrease in the content area of 28 cm2. Determine the side length of the original square.
  • In a
    rt_triangle In a right triangle, the areas of the squares above its sides are 169; 25 and 144. The length of its longer leg is: