Center of gravity

The mass points are distributed in space as specified by coordinates and weight. Find the center of gravity of the mass points system:

A1 [-17; 10; 9] m1 = 23 kg
A2 [-16; -19; 0] m2 = 31 kg
A3 [4; -14; -10] m3 = 94 kg
A4 [-7; -14; 1] m4 = 85 kg
A5 [17; -9; -12] m5 = 59 kg


Final Answer:

x0 =  -0.3527
y0 =  -11.6301
z0 =  -4.6438

Step-by-step explanation:

x1=17;y1=10;z1=9 m1=23 x2=16;y2=19;z2=0 m2=31 x3=4;y3=14;z3=10 m3=94 x4=7;y4=14;z4=1 m4=85 x5=17;y5=9;z5=12 m5=59 m=m1+m2+m3+m4+m5=23+31+94+85+59=292  Mx=m1 x1+m2 x2+m3 x3+m4 x4+m5 x5=23 (17)+31 (16)+94 4+85 (7)+59 17=103  My=m1 y1+m2 y2+m3 y3+m4 y4+m5 y5=23 10+31 (19)+94 (14)+85 (14)+59 (9)=3396  Mz=m1 z1+m2 z2+m3 z3+m4 z4+m5 z5=23 9+31 0+94 (10)+85 1+59 (12)=1356  x0=mMx=292(103)=0.3527
y0=mMy=292(3396)=11.6301
z0=mMz=292(1356)=4.6438



Did you find an error or inaccuracy? Feel free to send us. Thank you!







Tips for related online calculators
Looking for help with calculating arithmetic mean?
Looking for a statistical calculator?

You need to know the following knowledge to solve this word math problem:

statisticsgeometryUnits of physical quantitiesthemes, topicsGrade of the word problem

Related math problems and questions: