# Circle

The circle touches two parallel lines p and q, and its center lies on line a, which is the secant of lines p and q.

Write the equation of the circle and determine the coordinates of the center and radius.

p: x-10 = 0

q: -x-19 = 0

a: 9x-4y+5 = 0

Write the equation of the circle and determine the coordinates of the center and radius.

p: x-10 = 0

q: -x-19 = 0

a: 9x-4y+5 = 0

### Correct answer:

Tips to related online calculators

Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?

Pythagorean theorem is the base for the right triangle calculator.

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?

Pythagorean theorem is the base for the right triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Center

Calculate the coordinates of the circle center: x² -4x + y² +10y +25 = 0 - Find the 5

Find the equation of the circle with center at (1,20), which touches the line 8x+5y-19=0 - Isosceles triangle

In an isosceles triangle ABC with base AB; A [3,4]; B [1,6] and the vertex C lies on the line 5x - 6y - 16 = 0. Calculate the coordinates of vertex C. - Coordinates

Determine the coordinates of the vertices and the area of the parallelogram, the two sides of which lie on the lines 8x + 3y + 1 = 0, 2x + y-1 = 0 and the diagonal on the line 3x + 2y + 3 = 0 - Circle

From the equation of a circle: 2x² +2y² +20x -20y +68 = 0 Calculate the coordinates of the center of the circle S[x_{0}, y_{0}] and radius of the circle r. - Intersections 3

Find the intersections of the circles x² + y² + 6 x - 10 y + 9 = 0 and x² + y² + 18 x + 4 y + 21 = 0 - Circle

Write the equation of a circle that passes through the point [0,6] and touch the X-axis point [5,0]: (x-x_S)^{2}+(y-y_S)^{2}=r^{2} - Chord BC

A circle k has the center at the point S = [0; 0]. Point A = [40; 30] lies on the circle k. How long is the chord BC if the center P of this chord has the coordinates: [- 14; 0]? - Sphere equation

Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1). - Prove

Prove that k1 and k2 are the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x^{2}+y^{2}+2x+4y+1=0 k2: x^{2}+y^{2}-8x+6y+9=0 - Intersection 6374

Determine the intersection of the two lines p and q if. : p: 3y + 2x-5 = 0 q: 4x + 7y-11 = 0 - Find parameters

Find parameters of the circle in the plane - coordinates of center and radius: x^{2}+(y-3)^{2}=14 - Ellipse

Ellipse is expressed by equation 9x² + 25y² - 54x - 100y - 44 = 0. Find the length of primary and secondary axes, eccentricity, and coordinates of the center of the ellipse. - Sphere from tree points

Equation of sphere with three point (a,0,0), (0, a,0), (0,0, a) and center lies on plane x+y+z=a - Circle - AG

Find the coordinates of circle and its diameter if its equation is: x² + y² - 6x-4y=36 - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - Find the 13

Find the equation of the circle inscribed in the rhombus ABCD where A[1, -2], B[8, -3] and C[9, 4].