The mast
We see the top of the pole at an angle of 45°. If we approach the pole by 10 m, we see the top of the pole at an angle of 60°. What is the height of the pole?
Correct answer:

Tips for related online calculators
Do you want to convert length units?
See also our right triangle calculator.
See also our trigonometric triangle calculator.
See also our right triangle calculator.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
Units of physical quantities:
Grade of the word problem:
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Depth angles
At the top of the mountain stands a castle with a tower 30 meters high. We see the crossroad at a depth angle of 32°50' and the heel at 30°10' from the top of the tower. How high is the top of the mountain above the crossroad?
- Powerplant chimney
From the building window at the height of 7.5 m, we can see the top of the factory chimney at an altitude angle of 76° 30 ′. We can see the chimney base from the same place at a depth angle of 5° 50 ′. How tall is the chimney?
- Elevation 80869
We can see the top of the tower standing on a plane from a certain point A at an elevation angle of 39° 25''. If we come towards its foot 50m closer to place B, we can see the top of the tower from it at an elevation angle of 56° 42''. How tall is the tow
- Clouds
We see the cloud under an angle of 26°10' and the Sun at an angle of 29°15'. The shade of the cloud is 92 meters away from us. Approximately at what height is the cloud?
- Observation 76644
From the smaller observation tower, we see the top of the larger tower at an elevation angle of 23°, and the difference in their heights is 12 m. How far apart are the observation towers?
- A flagpole
A flagpole is leaning at an angle of 107° with the ground. A string fastened to the top of the flagpole is holding up the pole. The string makes an angle of 38° with the ground, and the flagpole is 8 m long. What is the length of the string?
- The pond
We can see the pond at an angle of 65°37'. Its endpoints are 155 m and 177 m away from the observer. What is the width of the pond?
- The chimney
How high is the chimney if we see it from a distance of 60 m at an angle of 42°?
- Observation 63194
Determine the height of the cloud above the lake's surface if we see it from place A at an elevation angle of 20° 57'. From the same place A, we see its image in the lake at a depth angle of 24° 12'. Observation point A is 115m above the lake level.
- Tower's view
From the church tower's view at the height of 65 m, the top of the house can be seen at a depth angle of alpha = 45° and its bottom at a depth angle of beta = 58°. Calculate the height of the house and its distance from the church.
- Opposite 78434
We see the tree on the opposite bank of the river at an angle of 15° from a distance of 41m from the river bank. From the bank of the river, we can see at an angle of 31°. How tall is the tree?
- Power line pole
From point A, the power pole is visible at an angle of 18 degrees. From place B, which we reach if we go from place A 30m towards the pillar at an angle of 10 degrees. Find the height of the power pole.
- Tourist 39691
How far from the lookout tower, 48 m high, did the tourist stand if he saw its top at an angle of 40 °?
- Thunderstorm
The height of the pole before the storm is 10 m. After a storm, when they check it, they see that the ground from the pole blows part of the column. The distance from the pole is 3 meters. At how high was the pole broken? (In fact, the pole created a rect
- Water 63
Boiler heated water at the rate of 6°c per minute for 14 minutes. It then cooled at the rate of 8°c per minute. What would be its temperature after 24 minutes if its original temperature was 40°c?
- Determine 8202
An observer watches two boats at depth angles of 64° and 48° from the top of the hill, which is 75 m above the lake level. Determine the distance between the boats if both boats and the observer are in the same vertical plane.
- Mirror
How far must Paul place a mirror to see the top of the tower 12 m high? The height of Paul's eyes above the horizontal plane is 160 cm, and Paul is from the tower distance of 20 m.