# Elevation 80869

We can see the top of the tower standing on a plane from a certain point A at an elevation angle of 39° 25''. If we come towards its foot 50m closer to place B, we can see the top of the tower from it at an elevation angle of 56° 42''. How tall is the tower?

### Correct answer:

Tips for related online calculators

Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.

Do you want to convert length units?

See also our right triangle calculator.

See also our trigonometric triangle calculator.

Try conversion angle units angle degrees, minutes, seconds, radians, grads.

Do you want to convert length units?

See also our right triangle calculator.

See also our trigonometric triangle calculator.

Try conversion angle units angle degrees, minutes, seconds, radians, grads.

#### You need to know the following knowledge to solve this word math problem:

**algebra**- expression of a variable from the formula
**planimetrics**- right triangle
- triangle
**numbers**- fractions
**goniometry and trigonometry**- tangent
- arctangent

#### Units of physical quantities:

#### Grade of the word problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Observation 63194

Determine the height of the cloud above the lake's surface if we see it from place A at an elevation angle of 20° 57'. From the same place A, we see its image in the lake at a depth angle of 24° 12'. Observation point A is 115m above the lake level. - Powerplant chimney

From the building window at the height of 7.5 m, we can see the top of the factory chimney at an altitude angle of 76° 30 ′. We can see the chimney base from the same place at a depth angle of 5° 50 ′. How tall is the chimney? - An observer

An observer standing west of the tower sees its top at an altitude angle of 45 degrees. After moving 50 meters to the south, he sees its top at an altitude angle of 30 degrees. How tall is the tower? - Observation 76644

From the smaller observation tower, we see the top of the larger tower at an elevation angle of 23°, and the difference in their heights is 12 m. How far apart are the observation towers? - Depth angles

At the top of the mountain stands a castle with a tower 30 meters high. We see the crossroad at a depth angle of 32°50' and the heel at 30°10' from the top of the tower. How high is the top of the mountain above the crossroad? - A radio antenna

Avanti is trying to find the height of a radio antenna on the roof of a local building. She stands at a horizontal distance of 21 meters from the building. The angle of elevation from her eyes to the roof (point A) is 42°, and the angle of elevation from - Steeple

We see the church tower from the road at an angle of 52°. When we zoom out to 29 meters away, it can be seen at an angle of 21°. How high is it? - Elevation angles

Two endpoints distant 240 m are inclined at an angle of 18°15'. The top of the mountain can be seen at elevation angles of 43° and 51° from its. How high is the mountain? - Opposite 78434

We see the tree on the opposite bank of the river at an angle of 15° from a distance of 41m from the river bank. From the bank of the river, we can see at an angle of 31°. How tall is the tree? - Big tree

You are standing 20 feet away from a tree, and you measure the angle of elevation to be 38°. How tall is the tree? - Tree

Between points A and B is 50m. From A, we see a tree at an angle of 18°. From point B, we see the tree at a three times bigger angle. How tall is a tree? - The tower

The observer sees the tower's base 96 meters high at a depth of 30 degrees and 10 minutes and the top of the tower at a depth of 20 degrees and 50 minutes. How high is the observer above the horizontal plane on which the tower stands? - Mirror

How far must Paul place a mirror to see the top of the tower 12 m high? The height of Paul's eyes above the horizontal plane is 160 cm, and Paul is from the tower distance of 20 m. - Tower's view

From the church tower's view at the height of 65 m, the top of the house can be seen at a depth angle of alpha = 45° and its bottom at a depth angle of beta = 58°. Calculate the height of the house and its distance from the church. - Angles of elevation

From points A and B on level ground, the angles of elevation of the top of a building are 25° and 37°, respectively. If |AB| = 57m, calculate, to the nearest meter, the distances of the top of the building from A and B if they are both on the same side of - Altitude angle

In complete winds-free weather, the balloon took off and remained standing exactly above the place from which it took off. It is 250 meters away from us. How high did the balloon fly when we saw it at an altitude angle of 25°? - The pond

We can see the pond at an angle of 65°37'. Its endpoints are 155 m and 177 m away from the observer. What is the width of the pond?