# Observation 63194

Determine the height of the cloud above the lake's surface if we see it from place A at an elevation angle of 20° 57'. From the same place A, we see its image in the lake at a depth angle of 24° 12'. Observation point A is 115m above the lake level.

### Correct answer:

Tips for related online calculators

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Two boats

Two boats are located from a height of 150m above the lake's surface at depth angles of 57° and 39°. Find the distance of both boats if the sighting device and both ships are in a plane perpendicular to the lake's surface. - Observation 82708

At the top of the hill, there is a 30-meter-high observation tower. We can see its heel and shelter from a certain point in the valley at elevation angles a=28°30" and b=30°40". How high is the top of the hill above the horizontal plane of the observation - Elevation 80869

We can see the top of the tower standing on a plane from a certain point A at an elevation angle of 39° 25''. If we come towards its foot 50m closer to place B, we can see the top of the tower from it at an elevation angle of 56° 42''. How tall is the tow - Observation tower

The observation tower has a height of 105 m above sea level. The ship is aimed at a depth angle of 1° 49' from the tower. How far is the ship from the base of the tower? - Clouds

We see the cloud under an angle of 26°10' and the Sun at an angle of 29°15'. The shade of the cloud is 92 meters away from us. Approximately at what height is the cloud? - Observation 76644

From the smaller observation tower, we see the top of the larger tower at an elevation angle of 23°, and the difference in their heights is 12 m. How far apart are the observation towers? - Determine 8202

An observer watches two boats at depth angles of 64° and 48° from the top of the hill, which is 75 m above the lake level. Determine the distance between the boats if both boats and the observer are in the same vertical plane. - Powerplant chimney

From the building window at the height of 7.5 m, we can see the top of the factory chimney at an altitude angle of 76° 30 ′. We can see the chimney base from the same place at a depth angle of 5° 50 ′. How tall is the chimney? - Clouds

From two points, A and B, on the horizontal plane, a forehead cloud was observed above the two points under elevation angles 73°20' and 64°40'. Points A and B are separated by 2830 m. How high is the cloud? - Observation 82811

From the 40 m high observation deck, you can see the top of the poplar at a depth angle of 50*10' and the bottom of the poplar at a depth angle of 58*. Calculate the height of the poplar. - Depth angles

At the top of the mountain stands a castle with a tower 30 meters high. We see the crossroad at a depth angle of 32°50' and the heel at 30°10' from the top of the tower. How high is the top of the mountain above the crossroad? - Mast angles and height

Calculate the height of the mast, whose foot can be seen at a depth angle of 11° and the top at a height angle of 28°. The mast is observed from a position 10 m above the level of the base of the mast. - Altitude angle

In complete winds-free weather, the balloon took off and remained standing exactly above the place from which it took off. It is 250 meters away from us. How high did the balloon fly when we saw it at an altitude angle of 25°? - Observation 17433

The aircraft flying just above point A can be seen from observation B, 2,400 meters away from point A, at an altitude of 52°30'. How high does the plane fly? - Temperature 61484

The air bubble at the bottom of the lake at a depth of h = 21 m has a radius r1 = 1 cm at a temperature of t1 = 4 °C. The bubble rises slowly to the surface, and its volume increases. Calculate its radius when it reaches the lake's surface, with a tempera - A radio antenna

Avanti is trying to find the height of a radio antenna on the roof of a local building. She stands at a horizontal distance of 21 meters from the building. The angle of elevation from her eyes to the roof (point A) is 42°, and the angle of elevation from - Angles of elevation

From points A and B on level ground, the angles of elevation of the top of a building are 25° and 37°, respectively. If |AB| = 57m, calculate, to the nearest meter, the distances of the top of the building from A and B if they are both on the same side of