Clouds

Approximately at what height is the cloud we see under an angle of 26°10' and see the Sun at an angle of 29°15' and the shade of the cloud is 92 meters away from us?

Result

h =  366.759 m

Solution:

A=26+10/60=157626.1667  B=29+16/60=4391529.2667  l=92 m h=x tan(B)=366.759 m h=(x+l) tan(A) x tan(B)=(x+l) tan(A) x tan(B)=x tan(A)+l tan(A) x=l tanA/(tanBtanA)=l tan26.1666666667 /(tan26.1666666667 tan26.1666666667 )=92 tan26.1666666667 /(tan26.1666666667 tan26.1666666667 )=l 0.491339/(0.4913390.491339)=654.44923 h=x tanB=x tan29.2666666667 =654.449231886 tan29.2666666667 =x 0.560409=366.7593 h2=(x+l) tanA=(x+l) tan26.1666666667 =(654.449231886+92) tan26.1666666667 =(x+l) 0.491339=366.7593A=26 + 10/60=\dfrac{ 157 }{ 6 } \doteq 26.1667 \ ^\circ \ \\ B=29 + 16/60=\dfrac{ 439 }{ 15 } \doteq 29.2667 \ ^\circ \ \\ l=92 \ \text{m} \ \\ h=x \cdot \ \tan(B)=366.759 \ \text{m} \ \\ h=(x+l) \cdot \ \tan(A) \ \\ x \cdot \ \tan(B)=(x+l) \cdot \ \tan(A) \ \\ x \cdot \ \tan(B)=x \cdot \ \tan(A) + l \cdot \ \tan(A) \ \\ x=l \cdot \ \tan A ^\circ / (\tan B ^\circ - \tan A ^\circ )=l \cdot \ \tan 26.1666666667^\circ \ / (\tan 26.1666666667^\circ \ - \tan 26.1666666667^\circ \ )=92 \cdot \ \tan 26.1666666667^\circ \ / (\tan 26.1666666667^\circ \ - \tan 26.1666666667^\circ \ )=l \cdot \ 0.491339 / (0.491339 - 0.491339)=654.44923 \ \\ h=x \cdot \ \tan B ^\circ =x \cdot \ \tan 29.2666666667^\circ \ =654.449231886 \cdot \ \tan 29.2666666667^\circ \ =x \cdot \ 0.560409=366.7593 \ \\ h_{2}=(x+l) \cdot \ \tan A ^\circ =(x+l) \cdot \ \tan 26.1666666667^\circ \ =(654.449231886+92) \cdot \ \tan 26.1666666667^\circ \ =(x+l) \cdot \ 0.491339=366.7593



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Tips to related online calculators
Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?
Do you want to convert length units?
See also our right triangle calculator.
See also our trigonometric triangle calculator.

 

 

Next similar math problems:

  1. Clouds
    cloud From two points A and B on the horizontal plane was observed forehead cloud above the two points under elevation angle 73°20' and 64°40'. Points A , B are separated by 2830 m. How high is the cloud?
  2. Building
    building The building I focused at an angle 30°. When I moved 5 m building I focused at an angle 45°. What is the height of the building?
  3. The mast
    geodet_1 The top of the pole we see at an angle of 45°. If we approach the pole by 10 m, we see the top of the pole at an angle of 60°. What is the height of the pole?
  4. One side
    angle_incline One side is 36 long with a 15° incline. What is the height at the end of that side?
  5. Steeple
    church_tower Steeple seen from the road at an angle of 75°. When we zoom out to 25 meters, it is seen at an angle of 20°. What is high?
  6. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  7. Maple
    tree_javor Maple peak is visible from a distance 3 m from the trunk from a height of 1.8 m at angle 62°. Determine the height of the maple.
  8. The rescue helicopter
    helicopter The rescue helicopter is above the landing site at a height of 180m. The site of the rescue operation can be seen from here at a depth angle of 52° 40 '. How far will the helicopter land from the rescue site?
  9. Height 2
    1unilateral_triangle Calculate the height of the equilateral triangle with side 38.
  10. Scalene triangle
    triangles_1 Solve the triangle: A = 50°, b = 13, c = 6
  11. Cotangent
    sin_cos If the angle α is acute, and cotg α = 1/3. Determine the value of sin α, cos α, tg α.
  12. Side c
    trig-cos-law In △ABC a=2, b=4 and ∠C=100°. Calculate length of the side c.
  13. Bisectors
    right_triangle As shown, in △ ABC, ∠C = 90°, AD bisects ∠BAC, DE⊥AB to E, BE = 2, BC = 6. Find the perimeter of triangle △ BDE.
  14. If the
    tan If the tangent of an angle of a right angled triangle is 0.8. Then its longest side is. .. .
  15. Cable car
    lanovka Cable car rises at an angle 45° and connects the upper and lower station with an altitude difference of 744 m. How long is "endless" tow rope?
  16. ABCD
    trig_1 AC= 40cm , angle DAB=38 , angle DCB=58 , angle DBC=90 , DB is perpendicular on AC , find BD and AD
  17. Isosceles triangle 10
    iso_23 In an isosceles triangle, the equal sides are 2/3 of the length of the base. Determine the measure of the base angles.