One side

One side is 36 long with a 15° incline. What is the height at the end of that side?

Correct result:

h =  9.6462


a=36 A=15  tanA=h/a  h=a tan(A)=36 tan(15)=9.6462

We would be pleased if you find an error in the word problem or inaccuracies and send it to us. Thank you!

Showing 0 comments:

Tips to related online calculators
See also our right triangle calculator.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions:

  • Building
    building The building I focused at an angle 30°. When I moved 5 m building I focused at an angle 45°. What is the height of the building?
  • Elevation angles
    mountain From the endpoints of the base 240 m long and inclined at an angle of 18° 15 ', the top of the mountain can be seen at elevation angles of 43° and 51°. How high is the mountain?
  • Clouds
    uhly Approximately at what height is the cloud we see under an angle of 26°10' and see the Sun at an angle of 29°15' and the shade of the cloud is 92 meters away from us?
  • Perimeter of triangle
    rt_triangle_1 In triangle ABC angle A is 60° angle B is 90° side size c is 15 cm. Calculate the triangle circumference.
  • Balloon and bridge
    hlbkovy_angle From the balloon, which is 92 m above the bridge, one end of the bridge is seen at a depth angle of 37° and the second end at depth angle 30° 30 '. Calculate the length of the bridge.
  • Right triangle trigonometrics
    triangle2 Calculate the size of the remaining sides and angles of a right triangle ABC if it is given: b = 10 cm; c = 20 cm; angle alpha = 60° and the angle beta = 30° (use the Pythagorean theorem and functions sine, cosine, tangent, cotangent)
  • Mast shadow
    horizons Mast has 13 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 15°. Determine the height of the mast, if the sun above the horizon is at angle 33°. Use the law of sines.
  • SAS triangle
    triangles2 The triangle has two sides long 7 and 19 and included angle 36°. Calculate area of this triangle.
  • Reflector
    lamp Circular reflector throws light cone with a vertex angle 49° and is on 33 m height tower. The axis of the light beam has with the axis of the tower angle 30°. What is the maximum length of the illuminated horizontal plane?
  • Mast
    stoziar Mast has 13 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 13.3°. Determine the height of the mast, if the sun above the horizon is at angle 45°12'.
  • 30-60-90
    30-60-90 The longer leg of a 30°-60°-90° triangle measures 5. What is the length of the shorter leg?
  • Inner angles
    triangle_1111 The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places.
  • Right angle
    rt_triangle_1 In a right triangle ABC with a right angle at the apex C, we know the side length AB = 24 cm and the angle at the vertex B = 71°. Calculate the length of the legs of the triangle.
  • A trapezoid
    lichobeznik A trapezoid with a base length of a = 36.6 cm, with angles α = 60°, β = 48° and the height of the trapezoid is 20 cm. Calculate the lengths of the other sides of the trapezoid.
  • The cable car
    lanovka The cable car is 2610 m long and rises at an angle of 35°. Calculate the height difference between the lower and upper station of the cable car.
  • Rhombus
    rhombus-diagonals_3 One angle of a rhombus is 136° and the shorter diagonal is 8 cm long. Find the length of the longer diagonal and the side of the rhombus.
  • The staircase
    schody The staircase has a total height of 3.6 m and forms an angle of 26° with the horizontal. Calculate the length of the whole staircase.