Angle practice problems - page 12 of 63
Number of problems found: 1245
- Two artillery
Objective C we observe from two artillery observatories, A and B, which are 975 m apart. The size of the BAC angle is 63°, and the size of ABC is 48°. Calculate the distance of points A and C.
- Cosine
Cosine and sine theorem: Calculate all unknown values (side lengths or angles) from triangle ABC. c = 2.9 cm; β = 28°; γ = 14° α =? °; a =? cm; b =? cm
- The angles ratio
The angles in the ABC triangle are in the ratio 1:2:3. Find the angles' sizes and determine what kind of a triangle it is.
- Angles of a triangle
In triangle ABC, the angle beta is 15° greater than the angle alpha. The remaining angle is 30° greater than the sum of the angles alpha and beta. Calculate the angles of a triangle.
- Isosceles triangle
An isosceles triangle has an angle against the base that measures 55°. What is the size of the angle at the base of an isosceles triangle? (Calculation and procedure)
- Calculate 8059
Calculate the magnitude of the third interior angle in triangle ABC when alpha = 30 °, beta = 60 °
- Calculate 4425
In the triangle ABC with the center of gravity T, b = 7cm, median to c: tc = 9cm, the ATC angle is 112 degrees. Calculate the length of the line ta.
- Internal angles
One internal angle of the triangle JAR is 25 degrees. The difference is the size of the two others is 15°. Identify the size of these angles.
- Trigonometric 50551
Solve the trigonometric equation: cos (x-52°) = 1
- Angles
The triangle is one outer angle 158°54' and one internal angle 148°. Calculate the other interior angles of a triangle.
- On a mass
The forces F1, and F2 with magnitudes of 40N act on a mass point M. Their resultant has a magnitude of 60N. Determine the angle that the forces F1 and F2 make.
- Main/central vertex
ABC is an isosceles triangle with base BC and central vertex A. The angle at vertex A is 18°. What will be the size of the angle at vertex B?
- Sine theorem 2
From the sine theorem, find the ratio of the sides of a triangle whose angles are 30°, 60°, and 90°.
- Magnitudes 3304
In triangle ABC, the interior angle at vertex B is 10 degrees greater than the angle at vertex A, and the angle at vertex C is three times greater than the angle at vertex B. Calculate the magnitudes of the interior angles of the triangle.
- Difference 82461
Determine the difference in angular velocities of the clock hands. [rad/s] ω of clock hands =? ω minute hands =? ω second hands =?
- Greatest angle
Calculate the greatest triangle angle with sides 124, 323, 302.
- Internally 8277
The outside angle at the base of an isosceles triangle is 132 degrees. Calculate the angles of a triangle internally.
- Interior angles
Calculate the interior angles of a triangle that are in the ratio 2:3:4.
- Alfa beta gama
The triangle's interior angle beta is 10 degrees greater than the angle alpha, and the gamma angle is three times larger than the beta. Determine the size of the interior angles.
- Apex of the Isosceles triangle
The angle at the apex of an isosceles triangle is 78°. The base is 28.5cm long. What is the shoulder length?
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.
See also more information on Wikipedia.