# The angles ratio

The angles in the ABC triangle are in the ratio 1: 2: 3. find the sizes of the angles and determine what kind of a triangle it is.

### Correct answer:

Tips to related online calculators

Need help to calculate sum, simplify or multiply fractions? Try our fraction calculator.

Check out our ratio calculator.

See also our trigonometric triangle calculator.

Check out our ratio calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Interior angles

Calculate the interior angles of a triangle that are in the ratio 2: 3: 4. - Gamma angle

Find the magnitude of the gamma angle in triangle ABC if: α = 38° 56 ’and β = 47° 54’. - Circumferential angle

Vertices of the triangle ΔABC lay on the circle and divided into arcs in the ratio 7:8:7. Determine the size of the angles of the triangle ΔABC. - Triangle angles

The angles α, β, γ in triangle ABC are in the ratio 6:2:6. Calculate size of angles. - Angles

In the triangle ABC, the ratio of angles is: a:b = 4: 5. The angle c is 36°. How big are the angles a, b? - MO Z7–I–6 2021

In the triangle ABC, point D lies on the AC side and point E on the BC side. The sizes of the angles ABD, BAE, CAE and CBD are 30°, 60°, 20° and 30°, respectively. Find the size of the AED angle. - Angles ratio

The internal angles of a triangle are in ratio 1:4:5. What kind of triangle is it? (solve interior angles and write down and discuss) - Angles of the triangle

ABC is a triangle. The size of the angles alpha, beta are in a ratio 4: 7. The angle gamma is greater than the angle alpha by a quarter of a straight angle. Determine angles of the triangle ABC. - Two angles

The triangles ABC and A'B'C 'are similar. In the ABC triangle, the two angles are 25° and 65°. Explain why in the triangle A'B'C 'is the sum of two angles of 90 degrees. - Angles ratio

In a triangle ABC true relationship c is less than b and b is less than a. Internal angles of the triangle are in the ratio 5:4:9. The size of the internal angle beta is: - The triangles

The triangles ABC and A'B'C 'are similar with a similarity coefficient of 2. The angles of the triangle ABC are alpha = 35°, beta = 48°. Determine the magnitudes of all angles of triangle A'B'C '. - Inner angles

The magnitude of the internal angle at the main vertex C of the isosceles triangle ABC is 72°. The line p, parallel to the base of this triangle, divides the triangle into a trapezoid and a smaller triangle. How big are the inner angles of the trapezoid? - The angles

The angles in the triangle are in the ratio 12: 15: 9. Find the angles. - Angles of a hexagon

Find the interior angles of a hexagon if the sizes of the angles form an arithmetic sequence, and the smallest angle is 70°. - Angles in a triangle

The angles of the triangle ABC make an arithmetic sequence with the largest angle γ=83°. What sizes have other angles in a triangle? - Main/central vertex

ABC is an isosceles triangle with base BC and main vertex A. The angle at vertex A is 18°. What will be the size of the angle at vertex B? - The aspect ratio

The aspect ratio of the rectangular triangle is 13: 12: 5. Calculate the internal angles of the triangle.