# Body volume - math word problems

- Right circular cone

The volume of a right circular cone is 5 liters. Calculate the volume of the two parts into which the cone is divided by a plane parallel to the base, one-third of the way down from the vertex to the base. - Right pyramid

A right pyramid on a base 4 cm square has a slant edge of 6 cm. Calculate the volume of the pyramid. - Base of prism

The base of the perpendicular prism is a rectangular triangle whose legs length are at a 3: 4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm^{2}. - Pebble

The aquarium with internal dimensions of the bottom 40 cm × 35 cm and a height of 30 cm is filled with two-thirds of water. Calculate how many millimeters the water level in the aquarium rises by dipping a pebble-shaped sphere with a diameter of 18 cm. - Steel tube

The steel tube has an inner diameter of 4 cm and an outer diameter of 4.8 cm. The density of the steel is 7800 kg/m3. Calculate its length if it weighs 15 kg. - TV transmitter

The volume of water in the rectangular swimming pool is 6998.4 hectoliters. The promotional leaflet states that if we wanted all the pool water to flow into a regular quadrangle with a base edge equal to the average depth of the pool, the prism would have. - Cube in a sphere

The cube is inscribed in a sphere with volume 3234 cm^{3}. Determine the length of the edges of a cube. - Axial section

Axial section of the cone is an equilateral triangle with area 208 dm^{2}. Calculate the volume of the cone. - Rectangular cuboid

The rectangular cuboid has a surface area 5334 cm^{2}, its dimensions are in the ratio 2:4:5. Find the volume of this rectangular cuboid. - Cuboid

Cuboid with edge a=16 cm and body diagonal u=45 cm has volume V=11840 cm^{3}. Calculate the length of the other edges. - Pool

The swimming pool is 10 m wide and 8 m long and 153 cm deep. How many hectoliters of water is in it, if the water is 30 cm below its upper edge? - Cubes

One cube is inscribed sphere and the other one described. Calculate difference of volumes of cubes, if the difference of surfaces in 257 mm^{2}. - Transforming cuboid

Cuboid with dimensions 6 cm, 10, and 11 cm is converted into a cube with the same volume. What is its edge length? - Cone A2V

Surface of cone in the plane is a circular arc with central angle of 126° and area 415 cm^{2}. Calculate the volume of a cone. - Tereza

The cube has area of base 256 mm^{2}. Calculate the edge length, volume and area of its surface. - Sphere

The surface of the sphere is 12100 cm^{2}, and weight is 136 kg. What is its density? - Cylinders

Area of the side of two cylinders is same rectangle of 50 cm × 11 cm. Which cylinder has a larger volume and by how much? - Tanks

Fire tank has cuboid shape with a rectangular floor measuring 13.7 m × 9.8 m. Water depth is 2.4 m. Water was pumped from the tank into barrels with a capacity of 2.7 hl. How many barrels were used, if the water level in the tank fallen 5 cm? Wr - Rainfall

Annual rainfall in our country are an average of 797 mm. How many m^{3}of water rains on average per hectare? - Cone

Calculate volume and surface area of the cone with diameter of the base d = 15 cm and side of cone with the base has angle 52°.

Do you have an interesting mathematical word problem that you can't solve it? Enter it, and we can try to solve it.