Diagonal of Square Problems - page 10 of 17
Number of problems found: 338
- Kite
John a kite, which is diamond-shaped. Its diagonals are 60 cm long and 90 cm long. Calculate: a) the diamond side b) how much paper does John need to make a kite if he needs paper on both sides and needs 5% of the paper for bending?
- Calculate: 16973
The dragon is shaped like a diamond. Its diagonals are 60 cm and 90 cm long. Calculate: a) side of the rhombus b) how much paper do we need to make the kite? If we need to stick it on both sides, it needs 5% of the total area of the paper to bend.
- Perpendicular sides
In the ABCDEFGHIJKL, the two adjacent sides are perpendicular to each other, and all sides except the AL and GF sides are identical. The AL and GF sides are twice as long as the other sides. The lines BG and EL intersect at point M. The quadrilateral ABMJ
- Parallelogram - area
Calculate the area of the parallelogram if the sides are a = 80, b = 60 long, and the size of the diagonal angle is 60°.
- Trapezoid 7537
Diagonal alpha equals 0.4 m, and diagonal beta equals 0.4 m in the isosceles trapezoid. Side AB is 120 cm, and side DC is 7.6 dm. Find the length of arms in an isosceles trapezoid. Please result round to 2 decimal places.
- Inaccessible direct
Determine the distance between two inaccessible places P, Q, if the distance between two observation points A, B is 2000m and if you know the size of the angles QAB = 52°40''; PBA = 42°01''; PAB = 86°40'' and QBA = 81°15''. The considered locations A, B,
- Rectangle diagonals
It is given a rectangle with an area of 24 cm² and a circumference of 20 cm. The length of one side is 2 cm larger than the length of the second side. Calculate the length of the diagonal. Length and width are yet expressed in natural numbers.
- Central park in city
The city park has the shape of a rectangle of 180 meters in length and 120 meters in width. People make their walk through the center of the park from one corner to the second. Calculate how many meters this way is shorter than walking along the path arou
- Rectangular trapezoid
The ABCD rectangular trapezoid with the AB and CD bases is divided by the diagonal AC into two equilateral rectangular triangles. The length of the diagonal AC is 62cm. Calculate the trapezium area in cm square and calculate how many different perimeters
- Forces
Forces with magnitudes F1 = 42N and F2 = 35N act at a common point and make an angle of 77°12'. How big is their resultant?
- Mrak - cloud
It is given segment AB, which is 12 cm in length, on which one side of the square MRAK is laid. MRAK's side length is 2 cm shown. MRAK gradually flips along the line segment AB, and point R leaves a paper trail. Draw the whole track of point R until the s
- Trapezoid 83
Trapezoid ABCD is composed of five triangles. Points E, and G divide segment AB in the ratio 2:4:3 (in this order) into three segments. Point F is the midpoint of segment AD. Triangle AEF is isosceles and right-angled. Triangles GBC and CDG are right-angl
- TV diagonal
A diagonal TV is 0.56 m long. How big is the television screen if the aspect ratio is 16:9?
- MO Z9–I–2 - 2017
VO is a longer base in the VODY trapezoid, and the diagonal intersection K divides the VD line in a 3:2 ratio. The area of the KOV triangle is 13.5 cm². Find the area of the entire trapezoid.
- Isosceles trapezoid
In an isosceles trapezoid KLMN, the intersection of the diagonals is marked by the letter S. Calculate the area of the trapezoid if /KS/: /SM/ = 2:1 and a triangle KSN is 14 cm².
- Construct rhombus - MO
Construct the diamond ABCD so that its diagonal BD is 8 cm and the distance of apex B from the line AD is 5 cm. Specify all possibilities. How long is a side of a rhombus?
- Trapezoid MO-5-Z8
ABCD is a trapezoid in that lime segment CE is divided into a triangle and parallelogram. Point F is the midpoint of CE, the DF line passes through the center of the segment BE, and the area of the triangle CDE is 3 cm². Determine the area of the trapezoi
- Diagonals 14073
There are three different points, C, E, and F, in the plane. Please draw the square ABCD when E and F lie on the diagonals of this square. How many solutions does the task have? Thank you
- Diagonals
Draw a square ABCD whose diagonals have a length of 6 cm.
- Intersection 3486
The rectangular coordinate system has a point A [-2; -4] and a point S [0; -2]. Determine the coordinates of points B, C, and D so that ABCD is a square and S is the intersection of their diagonals.
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.