Mrak - cloud

It is given segment AB of length 12 cm, where one side of the square MRAK laid on it. MRAK's side length 2 cm shown. MRAK gradually flips along the line segment AB the point R leaves a paper trail.
Draw the whole track of point R until square can do the line AB on both sides and returns to its original position.

Result

n=##:  0



Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!





Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




Following knowledge from mathematics are needed to solve this word math problem:

Next similar math problems:

  1. Square ABCD
    squares_5 Construct a square ABCD with cente S [3,2] and the side a = 4 cm. Point A lies on the x-axis. Construct square image in the displacement given by oriented segment SS'; S` [-1 - 4].
  2. Circle tangent
    thales_3 It is given to a circle with the center S and radius 3.5 cm. Distance from the center to line p is 6 cm. Construct a circle tangent n which is perpendicular to the line p.
  3. MO circles
    mo Juro built the ABCD square with a 12 cm side. In this square, he scattered a quarter circle that had a center at point B passing through point A and a semicircle l that had a center at the center of the BC side and passed point B. He would still build a ci
  4. Quatrefoil
    4listek Calculate area of the quatrefoil which is inscribed in a square with side 6 cm.
  5. Rhombus construction
    rhombus_7 Construct ABCD rhombus if its diagonal AC=9 cm and side AB = 6 cm. Inscribe a circle in it touching all sides...
  6. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  7. 10 pieces
    circle_div How to divide the circle into 10 parts (geometrically)?
  8. Regular octagon
    220px-N_uholnik Draw the regular octagon ABCDEFGH inscribed with the circle k (S; r = 2.5 cm). Select point S' so that |SS'| = 4.5 cm. Draw S (S '): ABCDEFGH - A'B'C'D'E'F'G'H'.
  9. Legs
    rak Cancer has 5 pairs of legs. The insect has 6 legs. 60 animals have a total of 500 legs. How much more are cancers than insects?
  10. Chords
    chords How many 4-tones chords (chord = at the same time sounding different tones) is possible to play within 7 tones?
  11. Blocks
    cubes3_1 There are 9 interactive basic building blocks of an organization. How many two-blocks combinations are there?
  12. Construct
    inscircle_triangle Construct a triangle ABC inscribed circle has a radius r = 2 cm, the angle alpha = 50 degrees = 8 cm. Make a sketch, analysis, construction and description.
  13. Examination
    examination The class is 21 students. How many ways can choose two to examination?
  14. Line
    skew_lines It is true that the lines that do not intersect are parallel?
  15. Confectionery
    cukrovinky The village markets have 5 kinds of sweets, one weighs 31 grams. How many different ways a customer can buy 1.519 kg sweets.
  16. PIN - codes
    pin How many five-digit PIN - code can we create using the even numbers?
  17. Guppies for sale
    guppies Paul had a bowl of guppies for sale. Four customers were milling around the store. 1. Rod told paul - I'll take half the guppies in the bowl, plus had a guppy. 2. Heather said - I'll take half of what you have, plus half a guppy. The third customer, Na