# Two chords

There is a given circle k (center S, radius r). From point A, which lies on circle k, are starting two chords of length r. What angle do chords make? Draw and measure.

### Correct answer:

Tips for related online calculators

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

#### Units of physical quantities:

#### Themes, topics:

#### Grade of the word problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Equilateral 14873

There is a circle with a radius of 2.5 cm and point A, which lies on it. Write an equilateral triangle ABC in the circle. - Two circles

Two circles with the same radius, r = 1, are given. The center of the second circle lies on the circumference of the first. What is the area of a square inscribed in the intersection of given circles? - Two chords

From the point on the circle with a diameter of 8 cm, two identical chords are led, which form an angle of 60°. Calculate the length of these chords. - Convex angle

There is a circle k (S; r), and a point A, which lies on this circle. There is also a point B on the circumference, for which it is true that in one direction, it is five times further from point A than in the opposite direction (around the circumference - Circle

The circle touches two parallel lines, p, and q, and its center lies on line a, which is the secant of lines p and q. Write the equation of the circle and determine the coordinates of the center and radius. p: x-10 = 0 q: -x-19 = 0 a: 9x-4y+5 = 0 - Chord

The point on the circle is the endpoint of diameter and endpoint of the chord length of the radius. What angle between chord and diameter? - ABCD square

In the ABCD square, the X point lies on the diagonal AC. The length of the XC is three times the length of the AX segment. Point S is the center of the AB side. The length of the AB side is 1 cm. What is the length of the XS segment? - Track arc

Two straight tracks are at an angle 74°. They will join with a circular arc with a radius r=1127 m. How long will the arc be connecting these lines (L)? How far is the arc's center point from track crossings (x)? - Two parallel chords

In a circle 70 cm in diameter, two parallel chords are drawn so that the circle's center lies between the chords. Calculate the distance of these chords if one of them is 42 cm long and the second 56 cm. - The rectangle 5

The rectangle OABC has one vertex at O, the center of a circle, and a second vertex A is 2 cm from the edge of the circle, as shown. The vertex A is also a distance of 7 cm from C. The point B and C lie on the circumference of the circle. a. What is the r - Intersection 64854

Draw any triangle. Make the axis of its two sides. Their intersection is point S. (a) Measure the distance of point S from all three vertices (b) Draw the axis of the third party. - Angle ASB

On a circle with a radius of 10 cm and with a center S, the points A, B, and C are given so that the central angle ASB is 60 degrees and the central angle ASC is 90 degrees. Find the length of the circular arc and the amount of AB and AC offsets. - A circle 2

A circle is centered at the point (-7, -1) and passes through the point (8, 7). The radius of the circle is r units. The point (-15, y) lies in this circle. What are r and y (or y1, y2)? - Chord BC

A circle k has the center at the point S = [0; 0]. Point A = [40; 30] lies on the circle k. How long is the chord BC if the center P of this chord has the coordinates: [- 14; 0]? - Mrak - cloud

It is given segment AB of length 12 cm, where one side of the square MRAK is laid on it. MRAK's side length is 2 cm shown. MRAK gradually flips along the line segment AB the point R leaves a paper trail. Draw the whole track of point R until the square ca - Two chords

In a circle with a radius of 8.5 cm, two parallel chords are constructed, the lengths of which are 9 cm and 12 cm. Find the distance of the chords in a circle. - Connect 6500

Draw the line KL = 55mm. Draw a circle k with center K and radius 4cm. Mark the points to belong to the circle and connect them with point L.