Trapezoid 83

Trapezoid ABCD is composed of five triangles. Points E, and G divide segment AB in the ratio 2:4:3 (in this order) into three segments. Point F is the midpoint of segment AD. Triangle AEF is isosceles and right-angled. Triangles GBC and CDG are right-angled. The area of ​​triangle AEF is 8cm2. What is the perimeter of the trapezoid?

Correct answer:

o =  54.9676 cm

Step-by-step explanation:

S1=8 cm2 Δ AEF: AFE = 90   AF=FE  AE = 2   AF = 2   FE  S1 = 2AF FE = 2AF2  AF=2 S1=2 8=4 cm AD=2 AF=2 4=8 cm  AE=2 AF=2 4=4 2 cm5.6569 cm  AE:EG:GB = 2:3:4 = 2x:4x:3x  AE = 2x x=AE/2=5.6569/2=2 2 cm2.8284 cm AB=(2+4+3) x=(2+4+3) 2.8284=18 2 cm25.4558 cm  S1 = 2AE h1  h2=AE2 S1=5.65692 8=2 2 cm2.8284 cm  h=2 h2=2 2.8284=4 2 cm5.6569 cm h = GC BG=3 x=3 2.8284=6 2 cm8.4853 cm  BC=h2+BG2=5.65692+8.48532=2 26 cm10.198 cm  EG = DC = 4 x  CD=4 x=4 2.8284=8 2 cm11.3137 cm  o=AB+BC+CD+AD=25.4558+10.198+11.3137+8=54.9676 cm



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Check out our ratio calculator.
Do you want to convert length units?
Calculation of an isosceles triangle.
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:

geometryalgebraarithmeticplanimetricsbasic functionsUnits of physical quantitiesGrade of the word problem

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: