Coat of arms
The class created its coat of arms, which had a shape composed of an isosceles trapezoid ABCD (shorter base is a = 4.5 cm long, longer 2a = 9 cm, trapezoid height 6 cm) and a semicircle with center S and diameter AB. Three identical isosceles triangles formed the trapezoid. Pupils painted gray half of the semicircle and the middle field of the trapezoid (central triangle). How many were cm2 areas of the coat of arms gray? Please round the result to one decimal place.
Correct answer:

Tips for related online calculators
Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.
Calculation of an isosceles triangle.
See also our trigonometric triangle calculator.
Calculation of an isosceles triangle.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Height—the 6183
In the isosceles trapezoid ABCD, the base length is a = 10cm, c = 6cm, and the arm's length is 4cm. Calculate its height—the result round to tenths.
- Trapezoid 7537
Diagonal alpha equals 0.4 m, and diagonal beta equals 0.4 m in the isosceles trapezoid. Side AB is 120 cm, and side DC is 7.6 dm. Find the length of arms in an isosceles trapezoid. Please result round to 2 decimal places.
- Calculating 63344
Calculate the volume of the cone formed by rotating an isosceles triangle about the height to the base, if the triangle has a side length of 15 cm and a height to the base of 12 cm. When calculating, use the value pi = 3.14 and round the result to one dec
- The bases
The bases of the isosceles trapezoid ABCD have 10 cm and 6 cm lengths. Its arms form an angle α = 50˚ with a longer base. Calculate the circumference and area of the ABCD trapezoid.
- Calculate 47763
Calculate the area of an isosceles trapezoid ABCD, whose longer base measures 48 cm, the shorter base measures 3/4 of the longest base, and the leg of the trapezoid measures 2/3 of the longer base. The result is rounded to the nearest hundredth.
- Half-filled 47753
The shaped container with a bottom diameter of 25 cm and a height of 30 cm is half-filled with oil. How many liters of oil are in the container? Please round the result to three decimal places.
- Isosceles 5666
In the isosceles trapezoid ABCD, calculate the missing side length "a" and its areas. Side b = d = 50 cm, c = 20 cm, height = 48 cm.
- Internal angles
The ABCD is an isosceles trapezoid, which holds: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: On the BC side is a K point such that |BK| = 2 |KC|, on its side CD is the point L such that |CL| = 2 |LD|, and on its side DA, the point M is such that | DM | = 2 |MA|. Det
- Similarity of triangles
If triangle ABC ~ to triangle XYZ, AC = 24, AB = 15, BC = 17, and XY = 9, what is the perimeter of triangle XYZ? Round all sides to 1 decimal place.
- Trapezoid 4908
Trapezoid ABCD with bases AB = a, CD = c has height v. The point S is the center of the arm BC. Prove that the area of the ASD triangle is equal to half the area of the ABCD trapezoid.
- Diagonal intersect
Isosceles trapezoid ABCD with length bases | AB | = 6 cm, CD | = 4 cm is divided into four triangles by the diagonals intersecting at point S. How much of the area of the trapezoid are ABS and CDS triangles?
- Circle arc
Calculate the circular arc area in m² where the diameter is 263 dm and a central angle is 40°. Please result round to three decimal places.
- Isosceles 37621
In the isosceles trapezoid ABCD, its bases AB = 20cm, CD = 12cm and arms AD = BC = 8cm are given. Specify its height and alpha angle at vertex A
- Isosceles triangle
Calculate the height of the isosceles triangle ABC with the base AB, AB = c = 10 cm, and the arms a = b = 13 cm long.
- Trapezium diagonals
It is given trapezium ABCD with bases | AB | = 12 cm, |CD| = 8 cm. Point S is the intersection of the diagonals for which |AS| is 6 cm long. Calculate the length of the full diagonal AC.
- Calculate 3161
In the isosceles trapezoid ABCD, the arm is 5.2 cm long, the middle bar is 7 cm long, and the height is 4.8 cm. Calculate the lengths of both bases.
- Geodesist
Triangle-shaped field (triangle ABC) has a side AB = 129 m. path XY is parallel to the side AB, which divides triangle ABC into two parts with the same area. What will be the length of path XY? Help, please, geodesist.