Základy fyziky - príklady

  1. Korčule 2
    korcule_1 Miloš chodí do školy na kolieskových korčuliach rýchlosťou 18 km/hod. Cesta mu trvá 15min. Akou rýchlosťou musí ísť, ak chce byť v škole o 5 min skôr?
  2. Dve autá 5
    cars_31 Z miest A a B idú oproti sebe po rovnakej ceste dve autá. Prvé ide stálou rýchlosťou 80 km/h, druhé rýchlosťou 60 km/h. Ako budú od seba tieto autá vzdialené štvrť hodiny pred stretnutím?
  3. Ako ďaleko?
    aircraft-02_13 Dve letiská, sú vzdialené 2690 km. Z prvého letiska letí lietadlo rýchlosťou 600 km/h, z druhého letí lietadlo rýchlosťou 780 km/h. Kedy sa stretnú, keď vyletela v 10 hodín? Ako ďaleko od prvého letisko?
  4. Auto ide
    cars_30 Auto ide z mesta A do mesta B priemernou rýchlosťou 70 km/h, naspäť priemernou rýchlosťou 50 km/h. Keby išlo tam aj späť priemernou rýchlosťou 60 km/h, celá jazda by trvala o 8 minút menej. Aká je vzdialenosť medzi mestami A a B?
  5. Potrubie
    pipe1_2 Vypočítajte hmotnosť 2 m dlhého železničného potrubia s vnútorným priemerom 10 cm a hrúbkou steny 3 mm. Hustota železa je p = 7,8 g/cm3.
  6. O ôsmej
    cyclist_41 O ôsmej ráno sa vybral z mesta K do mesta L cyklista. V meste L sa zdržal 4,25 hodiny a vrátil sa domov o 15. Hodine. Vypočítajte vzdialenosť medzi mestami K a L, ak cyklista išiel do mesta L rýchlosťou 12 km/h a z mesta L do mesta K rýchlosťou 10 km/h.
  7. Cyklista 16
    cyclist_38 Cyklista išiel z miesta A do miesta B vzdialeného 60km. Prvú polovicu prešiel rýchlosťou 30km/h, druhú 20km/h. Ako dlho mu trvala cesta?
  8. Lietadlová loď
    aircraft_carrier Štartovacia dráha lietadla na materskej lodi je dlhá 49m. Vypočítajte zrýchlenie, lietadla, aby jeho rýchlosť pri opustení katapultovacieho zariadenia dosiahla 252km h–1
  9. Vlak
    rjet Cez most dlhý l = 240m prejde vlak stálou rýchlosťou za dobu t1 = 21s. Okolo semaforu na kraji mosta prejde vlak rovnakou rýchlosťou za dobu t2 = 9s. a) Akou rýchlosťou v išiel vlak? b) Ako dlho trvala cesta cez most strojvodcovi vo vlaku? c) Aká je dĺžk
  10. Eiffelová veža
    eiffel_tower Eiffelova veža v Paríži je 300 metrov vysoká, je zhotovená z ocele. Jej hmotnosť je 8000 ton. Aký vysoký bude model veže zhotoveného z takého istého materiálu, ak má vážiť 2.4 kg?
  11. Sily
    ijk Na bod O pôsobia tri navzájom kolmé sily F1=20 N, F2=7 N, F3=19 N. Určte výslednicu F a uhly, ktoré zviera výslednica so zložkami F1, F2, F3.
  12. Širokouhlý monitor
    lcd Biznis výpočtovej techniky zasiahla vlna širokouhlých monitorov a televízorov. Vypočítajte plochu LCD monitora s dĺžkou uhlopriečky 20 palcov pri pomere strán 4:3 a potom s pomerom strán 16:9. Je kúpa širokouhlého monitora se stejnou úhlopříčkou výhodnej
  13. Rekonštrukcia koridoru
    koridor A. Vypočítajte o koľko minút sa skráti cestovanie na 187 km dlhom železničnom koridore, ak sa maximálna rýchlosť zvýši zo 120 km/h na 160 km/h. B. Vypočítajte o koľko minút sa skráti doba cestovania, ak uvažujeme že vlak musí zastaviť v 6 staniciach, prič
  14. Turisti
    hiking Z chaty vyšla prvá skupina turistov o 10:00 rýchlosťou 4 km/h. Druhá vyšla za nimi o 47 minút neskôr, rýchlosťou 6 km/h. Za aký čas a koľko km od chaty doženie prvú skupinu?
  15. Nádoba + voda
    cuboid_water Nádoba úplne naplnená vodou mala hmotnosť 12 kg. Po odliatí troch štvrtín množstvo mala hmotnosť 3 kg. Vypočítajte hmotnosť a objem nádoby.
  16. Dve sily
    vector-add Dve sily s veľkosťou 25 a 30 Newtonov pôsobia na objekt v uhloch 10° a 100°. Nájdite smer a veľkosť výslednej sily. Zaokrúhlite na dve desatinné miesta medzivýpočty a konečnú odpoveď.
  17. Dutá guľa
    sphere_2 Oceľová dutá guľa pláva na vode ponorená do polovice svojho objemu. Určte vonkajší polomer gule a hrúbku steny, ak viete, že hmotnosť gule je 0,5 kg a merná hmotnosť ocele je 7850 kg/m3.
  18. Vlak
    sncf Vlak ide rýchlosťou 96 km/h. Od začiatku brzdenia po úplné zastavenie vlaku ubehne 3.3 minút. Ak vlak pri brzdení rovnomerne spomaľuje, vypočítajte vzdialenosť miesta od stanice, v ktorom treba začať brzdiť.
  19. Dvaja bežci
    sprinters_1 Dvaja bežci vybehli súčasne proti sebe z miest vzdialených 34.6 km. Priemerná rýchlosť prvého bežca bola o 1/5 vyššia ako priemerná rýchlosť druhého bežca. Za ako dlho by každý ubehol zmieňovaných 34.6 km, ak viete, že sa na trati stretnú po 67 minútach?
  20. Klzisko
    klzisko-korcule Obdĺžnikové klzisko s rozmermi 58.2 m a 561 dm sa má pokryť vrstvou ľadu vysokou 4.7 cm. Koľko litrov vody je treba k vytvoreniu ľadu, ak objem ľadu je o 10.3% väčší ako objem vody.

Máš zaujímavý príklad, ktorý nevieš vypočítať? Vlož ho a my Ti ho skúsime vypočítať.



Na túto emailovú adresu Vám odpovieme riešenie; vyriešené príklady pribúdajú aj tu. Ak ju uvediete, uveďte ju bezchybne a skontrolujte si či nemáte plný mailbox.