Combinations with repetition
The calculator finds the number of combinations of the k-th class from n elements with repetition. A combination with repetition of k objects from n is a way of selecting k objects from a list of n. The order of selection does not matter and each object can be selected more than once (repeated).Calculation:
Ck′(n)=(kn+k−1) n=10 k=4 C4′(10)=C4(10+4−1)=C4(13)=(413)=4!(13−4)!13!=4⋅3⋅2⋅113⋅12⋅11⋅10=715
The number of combinations with repetition: 715
A bit of theory - the foundation of combinatorics
Combinations with repeat
Here we select k element groups from n elements, regardless of the order, and the elements can be repeated. k is logically greater than n (otherwise, we would get ordinary combinations). Their count is:Ck′(n)=(kn+k−1)=k!(n−1)!(n+k−1)!
Explanation of the formula - the number of combinations with repetition is equal to the number of locations of n − 1 separators on n-1 + k places. A typical example is: we go to the store to buy 6 chocolates. They offer only 3 species. How many options do we have? k = 6, n = 3.
Foundation of combinatorics in word problems
- Three-digit 6690
How many three-digit numbers do we make from the numbers 4,5,6,7?
- Five-digit numbers
How many different five-digit numbers can be created from the number 2,3,5 if the number 2 appears in the number twice and the number 5 also twice?
- Bouquets
The flower shop sells roses, tulips, and daffodils. How many different bouquets of five flowers can we make?
- Admittedly 7431
How many ways can three children divide five small and six large exercise books? Admittedly, some get nothing.
- STRESSED word
Each letter in STRESSED is printed on identical cards, one letter per card, and assembled in random order. Calculate the probability that the cards spell DESSERTS when assembled.
more math problems »