Fraction Calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, and division — and evaluates expressions with fractions. Each calculation includes detailed step-by-step explanations.
The result:
1/2 + 4 5/8 = 41/8 = 5 1/8 = 5.125
Spelled out: forty-one eighths (or five and one eighth).How do we solve fractions step by step?
- Conversion a mixed number 4 5/8 to a improper fraction: 4 5/8 = 4 5/8 = 4 · 8 + 5/8 = 32 + 5/8 = 37/8
To find a new numerator:
a) Multiply the whole number 4 by the denominator 8. Whole number 4 equally 4 * 8/8 = 32/8
b) Add the answer from the previous step 32 to the numerator 5. New numerator is 32 + 5 = 37
c) Write a previous answer (new numerator 37) over the denominator 8.
Four and five eighths is thirty-seven eighths. - Add: 1/2 + 37/8 = 1 · 4/2 · 4 + 37/8 = 4/8 + 37/8 = 4 + 37/8 = 41/8
It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(2, 8) = 8. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 2 × 8 = 16. In the following intermediate step, it cannot further simplify the fraction result by canceling.
In other words, one half plus thirty-seven eighths equals forty-one eighths.
Rules for expressions with fractions:
Fractions - Use a forward slash to separate the numerator and denominator. For example, for five-hundredths, enter 5/100.Mixed numbers Leave one space between the whole number and the fraction part, and use a forward slash for the fraction. For example, enter 1 2/3 . For negative mixed numbers, write the negative sign before the whole number, such as -5 1/2.
Division of fractions - Since the forward slash is used for both fraction lines and division, use a colon (:) to divide fractions. For example, to divide 1/2 by 1/3, enter 1/2 : 1/3.
Decimals Enter decimal numbers using a decimal point (.), and they will be automatically converted to fractions. For example, enter 1.45.
Math Symbols
| Symbol | Symbol name | Symbol Meaning | Example |
|---|---|---|---|
| + | plus sign | addition | 1/2 + 1/3 |
| - | minus sign | subtraction | 1 1/2 - 2/3 |
| * | asterisk | multiplication | 2/3 * 3/4 |
| × | times sign | multiplication | 2/3 × 5/6 |
| : | division sign | division | 1/2 : 3 |
| / | division slash | division | 1/3 / 5 |
| : | colon | complex fraction | 1/2 : 1/3 |
| ^ | caret | exponentiation / power | 1/4^3 |
| () | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• fraction to decimal: 1/4
• fraction to percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• multiplying fractions: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
Order of Operations
Ever wondered why calculators don't just work left to right? This calculator follows the mathematical order of operations — a set of rules that ensures everyone solves expressions the same way, every time.
Popular Memory Tricks
Different regions use different mnemonics to remember this order:
* PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction
* BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
* BODMAS - Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction
* GEMDAS - Grouping symbols (parentheses, brackets, braces: (){}), Exponents, Multiplication, Division, Addition, Subtraction
The Golden Rules
Rule 1: Multiplication and division always come before addition and subtraction. Think of them as the VIPs that skip to the front of the line!
Rule 2: When operations have equal priority (like × and ÷, or + and −), work from left to right—just like reading a book.
Rule 3: Parentheses change the natural order of evaluation of operations.
Fractions in word problems:
- Subtract and compare
1-5/8 is the same as 11/8, true or false? - The numerator
The numerator of the fraction is 5 more than its denominator. If 4 is added to the numerator and denominator, the fraction obtained is 6/5. What is that fraction? - Conner
Conner picked 8 1/5 pounds of apples. Louisa picked 9 2/3 pounds of apples. How many apples, more pounds, did Louisa pick than Conner? - Fruit
There are a total of 28 pear and apple trees in the set. There are no other fruit trees in the set. The numbers of pear and apple trees in this order are in the ratio 3:4. Which is false? A. There are 3/4 apple trees among the fruit trees. B. There are fe - Fraction difference
How much is 1/3 bigger than 1/9? - Taylor
Taylor filled eight 5 oz glasses with orange juice ⅔ full. Emeline filled five 9 oz glasses with orange juice ¾ full. Who used more juice? - Compare three fractions
Which of the three rational numbers is the largest? 1/7, 6/17, 4/17
more math problems »
Last Modified: February 17, 2026
