Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.
The result:
2 1/4 - 3/4 = 3/2 = 1 1/2 = 1.5
The result spelled out in words is three halves (or one and a half).How do we solve fractions step by step?
- Conversion a mixed number 2 1/4 to a improper fraction: 2 1/4 = 2 1/4 = 2 · 4 + 1/4 = 8 + 1/4 = 9/4
To find a new numerator:
a) Multiply the whole number 2 by the denominator 4. Whole number 2 equally 2 * 4/4 = 8/4
b) Add the answer from the previous step 8 to the numerator 1. New numerator is 8 + 1 = 9
c) Write a previous answer (new numerator 9) over the denominator 4.
Two and one quarter is nine quarters. - Subtract: 9/4 - 3/4 = 9 - 3/4 = 6/4 = 2 · 3/2 · 2 = 3/2
Both fractions have the same denominator, which is then the common denominator in the subtracting them. In the following intermediate step, cancel by a common factor of 2 gives 3/2.
In other words, nine quarters minus three quarters equals three halves.
Rules for expressions with fractions:
Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.
Math Symbols
Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|
+ | plus sign | addition | 1/2 + 1/3 |
- | minus sign | subtraction | 1 1/2 - 2/3 |
* | asterisk | multiplication | 2/3 * 3/4 |
× | times sign | multiplication | 2/3 × 5/6 |
: | division sign | division | 1/2 : 3 |
/ | division slash | division | 1/3 / 5 |
: | colon | complex fraction | 1/2 : 1/3 |
^ | caret | exponentiation / power | 1/4^3 |
() | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing Fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• Fraction to Decimal: 1/4
• Fraction to Percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• fractions multiple: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
- PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
- BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
- BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
- GEMDAS: Grouping symbols (brackets: (){}), Exponents, Multiplication, Division, Addition, Subtraction.
- MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., + and -, or * and /) must be evaluated from left to right.
Fractions in word problems:
- The numerator
The numerator of the fraction is 5 more than its denominator. If 4 is added to the numerator and denominator, the fraction obtained is 6/5. What is that fraction?
- Conner
Conner picked 8 1/5 pounds of apples. Louisa picked 9 2/3 pounds of apples. How many apples, more pounds, did Louisa pick than Conner?
- Bigger 3204
How much is 1/3 bigger than 1/9?
- Taylor
Taylor filled eight 5 oz glasses with orange juice ⅔ full. Emeline filled five 9 oz glasses with orange juice ¾ full. Who used more juice?
- Comparing by height
Ira is 1 2/5 m tall. Her mother is 4/5 m as tall as Ira. How many times is Ira's mother taller than her?
- Percentage 63864
Through the first pipe, 90 hl of water flows into the tank per hour, and 2.7 l of water per second through the second pipe. Calculate by what percentage more or less water flows per unit time into the tank through the second pipe than through the first pi
- Quarter of 60 grams
For a science experiment, students need to find 25% of 60 grams. John says " I can find this by calculation 1/4 of 60" Andre says: 25% of 60 means 25/100 times 60. Do you agree with either of them? Show your reasoning
more math problems »
Last Modified: June 23, 2025