# Fraction calculator

This fraction calculator performs basic and advanced fraction operations, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. The calculator helps in finding value from multiple fractions operations. Solve problems with two, three, or more fractions and numbers in one expression.

## The result:

### 3 1/5 + 2 2/3 = 88/15 = 5 13/15 ≅ 5.8666667

The spelled result in words is eighty-eight fifteenths (or five and thirteen fifteenths).### How do we solve fractions step by step?

- Conversion a mixed number 3 1/5 to a improper fraction: 3 1/5 = 3 1/5 = 3 · 5 + 1/5 = 15 + 1/5 = 16/5

To find a new numerator:

a) Multiply the whole number 3 by the denominator 5. Whole number 3 equally 3 * 5/5 = 15/5

b) Add the answer from the previous step 15 to the numerator 1. New numerator is 15 + 1 = 16

c) Write a previous answer (new numerator 16) over the denominator 5.

Three and one fifth is sixteen fifths. - Conversion a mixed number 2 2/3 to a improper fraction: 2 2/3 = 2 2/3 = 2 · 3 + 2/3 = 6 + 2/3 = 8/3

To find a new numerator:

a) Multiply the whole number 2 by the denominator 3. Whole number 2 equally 2 * 3/3 = 6/3

b) Add the answer from the previous step 6 to the numerator 2. New numerator is 6 + 2 = 8

c) Write a previous answer (new numerator 8) over the denominator 3.

Two and two thirds is eight thirds. - Add: 16/5 + 8/3 = 16 · 3/5 · 3 + 8 · 5/3 · 5 = 48/15 + 40/15 = 48 + 40/15 = 88/15

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(5, 3) = 15. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 5 × 3 = 15. In the following intermediate step, it cannot further simplify the fraction result by canceling.

In other words - sixteen fifths plus eight thirds is eighty-eight fifteenths.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3^2

• cube of a fraction: 2/3^3

• exponentiation of a fraction: 1/2^4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) : 4/22 - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- Identify improper fraction

How do you identify improper fractions? Which is improper: A) 3/4 B) 32/15 C) 3/9 D) 2 2/11 - The fuel

The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using - Dividends

The three friends divided the win by the invested money. Karlos got three-eighths, John 320 permille, and the rest got Martin. Who got the most and which the least? - For each

For each pair of expressions, circle the greater product without finding the product. (write 1=left expression, 2=right expression) a. 3/4 x 2/3 and 3/4 x 1/2 b. 2/3 x 3 1/4 and 4/3 x 3 1/4 c. 3/8 x 3/8 and 3/8 x 1/2

- Buing

Brother got to buy 240 CZK and could buy for 1/8 what he wanted. Could he pay the rest of the purchase for 200 CZK? - Compare fractions

Find which is the larger of the two fractions: 11/32, 7/24 by expressing the numbers as: a) fractions with the same denominator; b) decimals. - Compare three fractions

Which of the three rational numbers is the largest? 1/7, 6/17, 4/17 - Sophomores

There are 3200 students at lake high school, and 3/8 of these are sophomores. If 3/5 of the sophomores favor the school forming a crew team and 7/10 of the remaining students (not sophomores) are in favor of forming a crew team, how many students are oppo - Sandy

Sandy, John, and Marg baked pies for the Bake Sale. Sandy cut his pies into 6ths, John cut his into 8ths, and Marg cut hers into quarters. Sandy sold 11/6, John sold 1 3/8 pies, and Marg sold 9/4 pies. Who sold the most pies? Who sold the fewest?

- What 11781

What is greater: 2/5 of 10, or 20% of 4000? - Three-quarters 11361

Which is more than two-thirds of the 99 or three-quarters of the 80? - Minutes 82607

A) how many kg is 4/5 tons more than 7/10 tons? b) by how many minutes is 1/3 of an hour less than 5/6 of an hour? - Dogs weights

Four out of nine dogs weigh less than 20 pounds. What is the decimal equivalent for the number of dogs weighing less than 20 pounds? - Achievement 66164

The test consisted of 50 questions, each with one possible correct answer. The test result is given by the sum of the correct answers, a maximum of 100 points. The criterion for admission was the achievement of 50 points. The study applicant answered 36 q

more math problems »