Fraction Calculator



This fraction calculator performs all fraction operations - addition, subtraction, multiplication, and division — and evaluates expressions with fractions. Each calculation includes detailed step-by-step explanations.

The result:

6 2/5 + 3 1/8 + 2/3 = 1223/120 = 10 23/12010.1916667

Spelled out: one thousand two hundred twenty-three one-hundred twentieths (or ten and twenty-three one-hundred twentieths).

How do we solve fractions step by step?

  1. Conversion a mixed number 6 2/5 to a improper fraction: 6 2/5 = 6 2/5 = 6 · 5 + 2/5 = 30 + 2/5 = 32/5

    To find a new numerator:
    a) Multiply the whole number 6 by the denominator 5. Whole number 6 equally 6 * 5/5 = 30/5
    b) Add the answer from the previous step 30 to the numerator 2. New numerator is 30 + 2 = 32
    c) Write a previous answer (new numerator 32) over the denominator 5.

    Six and two fifths is thirty-two fifths.
  2. Conversion a mixed number 3 1/8 to a improper fraction: 3 1/8 = 3 1/8 = 3 · 8 + 1/8 = 24 + 1/8 = 25/8

    To find a new numerator:
    a) Multiply the whole number 3 by the denominator 8. Whole number 3 equally 3 * 8/8 = 24/8
    b) Add the answer from the previous step 24 to the numerator 1. New numerator is 24 + 1 = 25
    c) Write a previous answer (new numerator 25) over the denominator 8.

    Three and one eighth is twenty-five eighths.
  3. Add: 32/5 + 25/8 = 32 · 8/5 · 8 + 25 · 5/8 · 5 = 256/40 + 125/40 = 256 + 125/40 = 381/40
    It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(5, 8) = 40. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 5 × 8 = 40. In the following intermediate step, it cannot further simplify the fraction result by canceling.
    In other words, thirty-two fifths plus twenty-five eighths equals three hundred eighty-one fortieths.
  4. Add: the result of step No. 3 + 2/3 = 381/40 + 2/3 = 381 · 3/40 · 3 + 2 · 40/3 · 40 = 1143/120 + 80/120 = 1143 + 80/120 = 1223/120
    It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(40, 3) = 120. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 40 × 3 = 120. In the following intermediate step, it cannot further simplify the fraction result by canceling.
    In other words, three hundred eighty-one fortieths plus two thirds equals one thousand two hundred twenty-three one-hundred twentieths.

Rules for expressions with fractions:

Fractions - Use a forward slash to separate the numerator and denominator. For example, for five-hundredths, enter 5/100.

Mixed numbers Leave one space between the whole number and the fraction part, and use a forward slash for the fraction. For example, enter 1 2/3 . For negative mixed numbers, write the negative sign before the whole number, such as -5 1/2.

Division of fractions - Since the forward slash is used for both fraction lines and division, use a colon (:) to divide fractions. For example, to divide 1/2 by 1/3, enter 1/2 : 1/3.

Decimals Enter decimal numbers using a decimal point (.), and they will be automatically converted to fractions. For example, enter 1.45.


Math Symbols


SymbolSymbol nameSymbol MeaningExample
+plus signaddition 1/2 + 1/3
-minus signsubtraction 1 1/2 - 2/3
*asteriskmultiplication 2/3 * 3/4
×times signmultiplication 2/3 × 5/6
:division signdivision 1/2 : 3
/division slashdivision 1/3 / 5
:coloncomplex fraction 1/2 : 1/3
^caretexponentiation / power 1/4^3
()parenthesescalculate expression inside first-3/5 - (-1/4)

Order of Operations

Ever wondered why calculators don't just work left to right? This calculator follows the mathematical order of operations — a set of rules that ensures everyone solves expressions the same way, every time.

Popular Memory Tricks

Different regions use different mnemonics to remember this order:

* PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction
* BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
* BODMAS - Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction
* GEMDAS - Grouping symbols (parentheses, brackets, braces: (){}), Exponents, Multiplication, Division, Addition, Subtraction

The Golden Rules

Rule 1: Multiplication and division always come before addition and subtraction. Think of them as the VIPs that skip to the front of the line!

Rule 2: When operations have equal priority (like × and ÷, or + and −), work from left to right—just like reading a book.

Rule 3: Parentheses change the natural order of evaluation of operations.

Last Modified: February 17, 2026