# Bottles of juice

How many 2-liter bottles of juice need to buy if you want to transfer juice to 50 pitchers rotary cone shape with a diameter of 24 cm and base side length of 1.5 dm.

Result

n =  34

#### Solution:

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

#### To solve this example are needed these knowledge from mathematics:

Tip: Our volume units converter will help you with converion of volume units.

## Next similar examples:

1. Volleyball
8 girls wants to play volleyball against boys. On the field at one time can be six players per team. How many initial teams of this girls may trainer to choose?
2. Gasholder
The gasholder has spherical shape with a diameter 20 m. How many m3 can hold in?
If Petra read 10 pages per day, she would read the book two days earlier than she read 6 pages a day. How many pages does a book have?
4. Cube corners
From cube of edge 14 cm cut off all vertices so that each cutting plane intersects the edges 1 cm from the nearest vertice. How many edges will have this body?
5. Factory and divisions
The factory consists of three auxiliary divisions total 2,406 employees. The second division has 76 employees less than 1st division and 3rd division has 212 employees more than the 2nd. How many employees has each division?
6. Theorem prove
We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
7. Truncated cone
Calculate the height of the rotating truncated cone with volume V = 1111 cm3 and a base radii r1 = 6.2 cm and r2 = 9.8 cm.
8. Cone area and side
Calculate the surface area and volume of a rotating cone with a height of 1.25 dm and 17,8dm side.
9. Ice cream in cone
In the ice cream cone with a diameter of 5.2 cm is 1.3 dl of ice cream. Calculate the depth of the cone.
10. Cross-sections of a cone
Cone with base radius 16 cm and height 11 cm divide by parallel planes to base into three bodies. The planes divide the height of the cone into three equal parts. Determine the volume ratio of the maximum and minimum of the resulting body.
11. Surface area
The volume of a cone is 1000 cm3 and the content area of the axis cut is 100 cm2. Calculate the surface area of the cone.
12. Powers
Express the expression ? as the n-th power of the base 10.
13. Tetrahedron
Calculate height and volume of a regular tetrahedron whose edge has a length 19 cm.
14. Volume of three cuboids
Calculate the total volume of all cuboids for which the the size of the edges are in a ratio of 1:2:3, and one of the edges has a size 6 cm.
15. Trees
A certain species of tree grows an average of 0.5 cm per week. Write an equation for the sequence that represents the weekly height of this tree in centimeters if the measurements begin when the tree is 200 centimeters tall.
16. 6 terms
Find the first six terms of the sequence. a1 = 7, an = an-1 + 6
17. Two equations
Solve equations (use adding and subtracting of linear equations): -4x+11y=5 6x-11y=-5