# Square grid

Square grid consists of a square with sides of length 1 cm. Draw in it at least three different patterns such that each had a content of 6 cm2 and circumference 12 cm and that their sides is in square grid.

Result

x =  0

Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

## Next similar examples:

1. Garden plot
Calculate how many meters of fence need to fence the square garden with length and width of 22 meters.
2. Tiles
How many square tiles with the content 121 cm2 has to be ordered for the paving of the square room with a side length of 2.75 meters?
3. Square garden
On the plan with a scale of 1:1500 is drawn as a square garden with area 81 cm2. How many meters is long garden fence? Determine the actual acreage gardens.
4. Squaring the Circle
Calculating side of the square with the same area as the circle of radius 18.
5. Square - increased perimeter
How many times is increased perimeter of the square, where its sides increases by 150%? If the perimeter of square will increase twice, how much% increases the content area of the square?
6. Area of square
Calculate the content area of the square whose perimeter is 24 dm.
7. Folded square
ABCD is a square. The square is folded on the midpoint of AB and A is folded onto the fold, creating a shaded region. The perimiter of the shaded figure is 75. Find the area of square ABCD
8. Perimeter of square
The square has a circumference 17cm. What is its area?
9. Playground
Fencing square playground cost € 464; 1 meter cost € 19. What is the area of the playground?
10. Rhombus HP
Calculate area of the rhombus with height 24 dm and perimeter 12 dm.
11. Katy MO
Kate draw triangle ABC. Middle of AB have mark as X and the center of the side AC as Y. On the side BC wants to find the point Z such that the content area of a 4gon AXZY was greatest. What part of the triangle ABC can maximally occupy 4-gon AXZY?
12. Theorem prove
We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?