3 masons

3 masons received 7,700 CZK. The second half received 1/2 more than the first and third twice more than the second mason. How much they each got crowns?

Result

a =  1400
b =  2100
c =  4200

Solution:


a+b+c=7700
b = 1.5 a
c = 2b

a+b+c = 7700
1.5a-b = 0
2b-c = 0

a = 1400
b = 2100
c = 4200

Calculated by our linear equations calculator.








Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




To solve this example are needed these knowledge from mathematics:

Do you have a system of equations and looking for calculator system of linear equations?

Next similar examples:

  1. Boys and money
    money_12 270 USD boys divided so that Peter got three times more than Paul and Ivan has 120 USD more than than Paul. How much each received?
  2. Two numbers
    maxwells-equation We have two numbers. Their sum is 140. One-fifth of the first number is equal to half the second number. Determine those unknown numbers.
  3. 925 USD
    money_22 Four classmates saved an annual total 925 USD. The second save twice as the first, third 35 USD more than the second and fourth 10 USD less than the first. How USD save each of them?
  4. Three workshops
    workers_24 There are 2743 people working in three workshops. In the second workshop works 140 people more than in the first and in third works 4.2 times more than the second one. How many people work in each workshop?
  5. Savings
    penize_29 Paul has a by half greater savings than half Stanley, but the same savings as Radek. Staney save 120 CZK less than Radek. What savings have 3 boys together?
  6. Dollars
    children Mama split 760 dollars Jane, Dane and Eva as follows: Jane got three times more than Dane and Dane and got 40 more than Eva. How much does get each of them?
  7. Euros
    bicycles Peter, Jane and Thomas have together € 550. Tomas has 20 euros more than Jane, Peter € 150 less than Thomas. Determine how much has each of them.
  8. Money duo
    money_18 Julius and Mark have together 45 euros. Mark has 50% more money than Julius. Determine the amount of money that have Mark and Julius.
  9. Mushrooms
    huby_2 Eva and Jane collected 114 mushrooms together. Eve found twice as much as Jane. How many mushrooms found each of them?
  10. A candle
    candles A candle shop sells scented candles for $16 each and unscented candles for $10 each. The shop sells 28 candles today and makes $400. a. Write a system of linear equations that represents the situation. b. Solve the system to answer the questions: How m
  11. Tour
    money_11 35 people went on a tour and paid 8530, -. Employees pay 165, and family members 310. How many employees and how many family members went to the tour?
  12. Two equations
    children_23 Solve equations (use adding and subtracting of linear equations): -4x+11y=5 6x-11y=-5
  13. Tickets
    tickets Tickets to the zoo cost $4 for children, $5 for teenagers and $6 for adults. In the high season, 1200 people come to the zoo every day. On a certain day, the total revenue at the zoo was $5300. For every 3 teenagers, 8 children went to the zoo. How man
  14. Linear system
    vahy_eq Solve this linear system (two linear equations with two unknowns): x+y =36 19x+22y=720
  15. Trees
    jablone Along the road were planted 250 trees of two types. Cherry for 60 CZK apiece and apple 50 CZK apiece. The entire plantation cost 12,800 CZK. How many was cherries and apples?
  16. Linsys2
    linear_eq_3 Solve two equations with two unknowns: 400x+120y=147.2 350x+200y=144
  17. Theorem prove
    thales_1 We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?