Dog price

Tereza agreed to get a dog and 6000 crowns a year for help in a dachshund breeding station. After eight months she had to finish work and got a dog and 2000 crowns. What price does a dog have?

Result

s =  6000

Solution:


12m = 6000 + s
8m = 2000 + s

12m-s = 6000
8m-s = 2000

m = 1000
s = 6000

Calculated by our linear equations calculator.







Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




To solve this example are needed these knowledge from mathematics:

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Next similar examples:

  1. Prism 4 sides
    hranol4sreg The prism has a square base with a side length of 3 cm. The diagonal of the sidewall of the prism/BG/is 5 cm. Calculate the surface of this prism in cm square and the volume in liters
  2. Castle tower
    veza The castle tower has a cone-shaped roof with a diameter of 10 meters and a height of 8 meters. Calculate how much m² of coverage is needed to cover it if we must add one-third for the overlap.
  3. Probability of intersection
    venn_three Three students have a probability of 0.7,0.5 and 0.4 to graduated from university respectively. What is the probability that at least one of them will be graduated?
  4. The diagram 2
    cone The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 cm2. Calculate correct to 3 significant figures: *Base Radius *Height *Volume of the cone
  5. Friction coefficient
    car What is the weight of a car when it moves on a horizontal road at a speed of v = 50 km/h at engine power P = 7 kW? The friction coefficient is 0.07
  6. The difference
    eq2 The difference of two numbers is 1375. If their exact quotient is 12. Find the two numbers
  7. A jackpot
    jackpot3 How many times must I play this jackpot to win? A jackpot of seven games having (1 X 2), i. E. , home win or away win.
  8. Uphill and downhill
    cyclist_49 The cyclist moves uphill at a constant speed of v1 = 10 km/h. When he reaches the top of the hill, he turns and passes the same track downhill at a speed of v2 = 40 km/h. What is the average speed of a cyclist?
  9. Four pavers
    tiles2_4 Four pavers would pave the square in 18 days. How many pavers do you need to add to done work in 12 days?
  10. Centroid - two bodies
    sphere_bar_2 A body is composed of a 0.8 m long bar and a sphere with a radius of 0.1m attached so that its center lies on the longitudinal axis of the bar. Both bodies are of the same uniform material. The sphere is twice as heavy as the bar. Find the center of gravit
  11. Potatoes
    zemiaky_7 For three days the store sold 1400 kg of potatoes. The first day they sold 100 kilograms of potatoes less than the second day, the third-day three-fifths of what they sold the first day. How many kgs of potatoes sold every day?
  12. Nine books
    books_42 Nine books are to be bought by a student. Art books cost $6.00 each and biology books cost $6.50 each . If the total amount spent was $56.00, how many of each book was bought?
  13. Rocket start
    freefall1 The body launched vertically up returns to the start site in 6 seconds. What height did it have?
  14. Sand castle
    piesokHrad Tim and Tom built a sand castle and embellished it with a flag. Half the pole with the flag plunged into the castle. The highest point of the pole was 80 cm above the ground, its lowest point 20 cm above the ground. How high was the sand castle?
  15. The sides 2
    trapezium_7 The sides of a trapezoid are in the ratio 2:5:8:5. The trapezoid’s area is 245. Find the height and the perimeter of the trapezoid.
  16. The work
    clock-night-schr_17 The work was to be done by 150 workers. At the beginning of their work, their number reduced by 40, which increased the time of work by 5 and 1/3 of the schedule. How long did work take?
  17. Lighthouse
    majak Marcel (point J) lies in the grass and sees the top of the tent (point T) and behind it the top of the lighthouse (P). | TT '| = 1.2m, | PP '| = 36m, | JT '| = 5m. Marcel lies 15 meters away from the sea (M). Calculate the lighthouse distance from the sea.