Commitee

A class consists of 6 males and 7 females. How many committees of 7 are possible if the committee must consist of 2 males and 5 females?

Result

n =  315

Solution: Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...): Be the first to comment! To solve this example are needed these knowledge from mathematics:

Would you like to compute count of combinations?

Next similar examples:

1. Committees How many different committees of 6 people can be formed from a class of 30 students?
2. Examination The class is 21 students. How many ways can choose two to examination?
3. Weekly service In the class are 20 pupils. How many opportunities have the teacher if he wants choose two pupils randomly who will weeklies?
4. Chords How many 4-tones chords (chord = at the same time sounding different tones) is possible to play within 7 tones?
5. PIN - codes How many five-digit PIN - code can we create using the even numbers?
6. Confectionery The village markets have 5 kinds of sweets, one weighs 31 grams. How many different ways a customer can buy 1.519 kg sweets.
7. Fish tank A fish tank at a pet store has 8 zebra fish. In how many different ways can George choose 2 zebra fish to buy?
8. A student A student is to answer 8 out of 10 questions on the exam. a) find the number n of ways the student can choose 8 out of 10 questions b) find n if the student must answer the first three questions c) How many if he must answer at least 4 of the first 5 que
9. Division Division has 18 members: 10 girls and 6 boys, 2 leaders. How many different patrols can be created, if one patrol is 2 boys, 3 girls and 1 leader?
10. Teams How many ways can divide 16 players into two teams of 8 member?
11. Trinity How many different triads can be selected from the group 43 students? On the menu are 12 kinds of meal. How many ways can we choose four different meals into the daily menu? There are 9 interactive basic building blocks of an organization. How many two-blocks combinations are there? How many ways can be rewarded 9 participants with the first, second and third prize in a sports competition? Calculate: ? Given a square ABCD and on each side 8 internal points. Determine the number of triangles with vertices at these points. We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?