Distance between 2 points

Find the distance between the points (7, -9), (-1, -9)

Correct result:

d =  8

Solution:

x0=7 y0=9  x1=1 y1=9  d=(x1x0)2+(y1y0)2=((1)7)2+((9)(9))2=8



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
For Basic calculations in analytic geometry is a helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.
Do you want to convert length units?
Pythagorean theorem is the base for the right triangle calculator.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1   video2

Next similar math problems:

  • Points on line segment
    segment Points P & Q belong to segment AB. If AB=a, AP = 2PQ = 2QB, find the distance: between point A and the midpoint of the segment QB.
  • Distance
    distance Calculate distance between two points X[18; 19] and W[20; 3].
  • Find the 3
    segment_2 Find the distance and midpoint between A(1,2) and B(5,5).
  • Vertices of a right triangle
    right_triangle_5 Show that the points D(2,1), E(4,0), F(5,7) are vertices of a right triangle.
  • Line segment
    line-segment.JPG For the line segment whose endpoints are L[-1, 13] and M[18, 2], find the x and y value for the point located 4 over 7 the distance from L to M.
  • Distance problem
    linear_eq_3 A=(x, x) B=(1,4) Distance AB=√5, find x;
  • Three points
    abs1_1 Three points A (-3;-5) B (9;-10) and C (2;k) . AB=AC What is value of k?
  • Distance problem 2
    geodetka_1 A=(x,2x) B=(2x,1) Distance AB=√2, find value of x
  • Center of line segment
    stredna_priecka_1 Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is .
  • On line
    primka On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
  • Triangle IRT
    triangles_5 In isosceles right triangle ABC with right angle at vertex C is coordinates: A (-1, 2); C (-5, -2) Calculate the length of segment AB.
  • Distance
    origin_math Wha is the distance between the origin and the point (18; 22)?
  • Calculate 6
    distance_point_line Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].
  • Line intersect segment
    linear_eq Decide whether the line p : x + 2 y - 7 = 0 intersects the line segment given by points A[1, 1] and B[5, 3]
  • Right angled triangle 2
    vertex_triangle_right LMN is a right-angled triangle with vertices at L(1,3), M(3,5), and N(6,n). Given angle LMN is 90° find n
  • Line
    negative_slope Straight-line passing through points A [-3; 22] and B [33; -2]. Determine the total number of points of the line in which both coordinates are positive integers.
  • Parametric form
    vzdalenost Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. ..