Z8–I–5 MO 2019

For eight different points as shown in the figure, points C, D, and E lie on a line parallel to line AB, F is the midpoint of line AD, G is the midpoint of line AC, and H is the intersection of lines AC and BE. The area of ​​triangle BCG is 12 cm2 and the area of ​​quadrilateral DFHG is 8 cm2

Determine the areas of triangles AFE, AHF, ABG, and BGH.

Correct answer:

S1 =  12 cm2
S2 =  12 cm2
S3 =  4 cm2
S4 =  4 cm2

Step-by-step explanation:

S(BCG) = 12  cm2 S(DFHG)= 8  cm2  S =  2av   S1 = S(AFE) = S(BCG) S1=12=12 cm2
S2 = S(ABG) =S(BCG)=  S1 S2=S1=12=12 cm2
S(ABD) = 2 S(BCG) = 2 12 = 24  S3 = S(AHF) = S(ABD)  S(DFHG)  S(ABG)  S3=24812=4 cm2
S4 = S(BGH) = S(AHF) S4=S3=4=4 cm2



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
See also our trigonometric triangle calculator.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: