# Katy MO

Kate drew triangle ABC. The middle of the line segment AB has marked as X and the center of the side AC as Y. On the side BC she wants to find the point Z such that the area of a 4gon AXZY was greatest. What part of the triangle ABC can maximally occupy 4-gon AXZY?

### Correct answer:

Tips for related online calculators

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

#### Themes, topics:

#### Grade of the word problem:

We encourage you to watch this tutorial video on this math problem: video1

## Related math problems and questions:

- Equilateral triangle ABC

In the equilateral triangle ABC, K is the center of the AB side, the L point lies on one-third of the BC side near the point C, and the point M lies in the one-third of the side of the AC side closer to the point A. Find what part of the ABC triangle cont - Triangle ABC

In a triangle ABC with the side BC of length 2 cm. Point K is the middle point of AB. Points L and M split the AC side into three equal lines. KLM is an isosceles triangle with a right angle at the point K. Determine the lengths of the sides AB, AC triang - MO - triangles

On the AB and AC sides of the triangle ABC lies successive points E and F, on segment EF lie point D. The EF and BC lines are parallel and is true this ratio FD:DE = AE:EB = 2:1. The area of ABC triangle is 27 hectares and line segments EF, AD, and DB seg - Applies 14683

Point B is the center of the circle. The line AC touches the circles at point C and applies AB = 20 cm and AC = 16 cm. What is the radius of the circle BC? - Internal angles

The ABCD is an isosceles trapezoid, which holds: |AB| = 2 |BC| = 2 |CD| = 2 |DA|: On the BC side is a K point such that |BK| = 2 |KC|, on its side CD is the point L such that |CL| = 2 |LD|, and on its side DA, the point M is such that | DM | = 2 |MA|. Det - Divide line segment

Find the point P on line segment AB, such that |AP| = r |AB| . Coordinates of endpoints: A = (−2, 0, 1), B = (10, 8, 5), ratio r = 1/4. - Chord BC

A circle k has the center at the point S = [0; 0]. Point A = [40; 30] lies on the circle k. How long is the chord BC if the center P of this chord has the coordinates: [- 14; 0]? - Number 6911

On the number axis, point P is the image of the number -2.54, and point Q is the image of the number 10.71. Find which number is the point R such that Q is the center of the line PR? - Bisector 2

ABC is an isosceles triangle. While AB=AC, AX is the bisector of the angle ∢BAC meeting side BC at X. Prove that X is the midpoint of BC. - Triangle midpoints

Determine coordinates of triangle ABC vertices if we know tirangle sides midpoints SAB [0;3] SBC [1;6] SAC [4;5], its sides AB, BC, AC. - Rhombus construction

Construct ABCD rhombus if its diagonal AC=9 cm and side AB = 6 cm. Inscribe a circle in it touching all sides... - ABCD square

In the ABCD square, the X point lies on the diagonal AC. The length of the XC is three times the length of the AX segment. Point S is the center of the AB side. The length of the AB side is 1 cm. What is the length of the XS segment? - MO Z7–I–6 2021

In triangle ABC, point D lies on the AC side and point E on the BC side. The sizes of the angles ABD, BAE, CAE, and CBD are 30°, 60°, 20°, and 30°, respectively. Find the size of the AED angle. - Identical 8831

In the triangle ABC, the point P lies closer to point A in the third of the line AB, the point R is closer to the point P in the third of the line P, and the point Q lies on the line BC so that the angles P CB and RQB are identical. Determine the ratio of - Three points 2

The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB, and DC is parallel to AB. Calculate the coordinates of D. - (instructions: 3314

Find the distance of the parallels, kt. the equations are: x = 3-4t, y = 2 + t and x = -4t, y = 1 + t (instructions: select a point on one line and find its distance from the other line) - Center

In the ABC triangle is point D[1,-2,6], which is the center of the |BC|, and point G[8,1,-3], which is the center of gravity of the triangle. Find the coordinates of the vertex A[x,y,z].