Calculate 5148
At a distance of 10 m from the river bank, they measured the base AB = 50 m parallel to the bank. Point C on the other bank of the river is visible from point A at an angle of 32°30' and from point B at an angle of 42°15'. Calculate the width of the river.
Correct answer:

Tips for related online calculators
Do you have a system of equations and looking for calculator system of linear equations?
Do you want to convert length units?
See also our trigonometric triangle calculator.
Do you want to convert length units?
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
- geometry
- similarity of triangles
- algebra
- system of equations
- expression of a variable from the formula
- planimetrics
- triangle
- goniometry and trigonometry
- tangent
Units of physical quantities:
Grade of the word problem:
We encourage you to watch this tutorial video on this math problem: video1
Related math problems and questions:
- Opposite 78434
We see the tree on the opposite bank of the river at an angle of 15° from a distance of 41m from the river bank. From the bank of the river, we can see at an angle of 31°. How tall is the tree?
- Building 67654
The 15 m high building is 30 m away from the river bank. The river's width can be seen from the roof of this building at an angle of 15 °. How wide is the river?
- Elevation 80866
Find the height of the tower when the geodetic measured two angles of elevation α=34° 30'' and β=41°. The distance between places AB is 14 meters.
- Big tower
From the tower, which is 15 m high, and 30 m from the river, the river's width appeared at an angle of 15°. How wide is the river in this place?
- Determine 8133
Determine the distance between two places, M, and N, between which there is an obstacle so that place N is not visible from place M. The angles MAN = 130°, NBM = 109°, and the distances |AM| = 54, |BM| = 60, while the points A, B, and M lie on one straigh
- The spacecraft
The spacecraft spotted a radar device at an altitude angle alpha = 34 degrees 37 minutes and had a distance of u = 615km from Earth's observation point. Calculate the distance d of the spacecraft from Earth at the moment of observation. Earth is considere
- Distance 2877
On a map with a scale of 1:50,000, we measured the distance of places AB = 136 mm. The actual distance between cities A and B is:
- Bridge across the river
The width of the river is 89 m. For terrain reasons, the bridge deviates from a common perpendicular to both banks by an angle of 12° 30 '. Calculate how many meters the bridge is longer than the river.
- A trapezoid
A trapezoid with a base length of a = 36.6 cm, with angles α = 60°, β = 48°, and the height of the trapezoid is 20 cm. Calculate the lengths of the other sides of the trapezoid.
- Decimeters 3594
From a distance of 36 meters from the chimney base, its top can be seen at an angle of 53 °. Calculate the chimney height and the result round to whole decimeters.
- Hypotenuse 64694
Point S is the center of the hypotenuse AB of the right triangle ABC. Calculate the content of triangle ABC if the line on the hypotenuse is 0.2 dm long and if | ∢ACS | = 30 °.
- Triangles
Find out whether the given sizes of the angles can be interior angles of a triangle: a) 23°10',84°30',72°20' b) 90°,41°33',48°37' c) 14°51',90°,75°49' d) 58°58',59°59',60°3'
- Aircraft
From the aircraft flying at an altitude of 500m, they observed places A and B (at the same altitude) in the direction of flight at depth angles alpha = 48° and beta = 35°. What is the distance between places A and B?
- A radio antenna
Avanti is trying to find the height of a radio antenna on the roof of a local building. She stands at a horizontal distance of 21 meters from the building. The angle of elevation from her eyes to the roof (point A) is 42°, and the angle of elevation from
- Calculate 32011
Calculate the size of the BVC angle if the following applies to the size of the angles: AVB = 37 ° 48 minutes, CVD = 52 ° 30 minutes, AVD = 118 °
- Elevation 80869
We can see the top of the tower standing on a plane from a certain point A at an elevation angle of 39° 25''. If we come towards its foot 50m closer to place B, we can see the top of the tower from it at an elevation angle of 56° 42''. How tall is the tow
- Maple
The maple peak is visible from a distance of 3 m from the trunk from a height of 1.8 m at an angle of 62°. Find the height of the maple.