Hyperbola
Find the equation of hyperbola that passes through the point M [30; 24] and has focal points at F1 [0; 4 sqrt 6], F2 [0; -4 sqrt 6].
Result
Result

Tips for related online calculators
Looking for help with calculating arithmetic mean?
Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Looking for a statistical calculator?
The Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.
Line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Looking for a statistical calculator?
The Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
Related math problems and questions:
- Hyperbola equation
Find the hyperbola equation with the center of S [0; 0], passing through the points: A [5; 3] B [8; -10]
- Circle
Write the equation of a circle that passes through the point [0,6] and touch the X-axis point [5,0]: (x-x_S)2+(y-y_S)2=r2
- Function 3
Function f(x)=a(x-r)(x-s) the graph of the function has x- intercept at (-4, 0) and (2, 0) and passes through the point (-2,-8). Find constant a, r, s.
- Determines: 33451
The line p is given by the point P [- 0,5; 1] and the direction vector s = (1,5; - 3) determines: A) value of parameter t for points X [- 1,5; 3], Y [1; - 2] lines p B) whether the points R [0,5; - 1], S [1,5; 3] lies on the line p C) parametric equations
- General line equations
In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the line is given by the slope form: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) t
- On line
On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0].
- Calculate 6
Calculate the distance of a point A[0, 2] from a line passing through points B[9, 5] and C[1, -1].
- Parabola
Find the equation of a parabola that contains the points at A[6; -5], B[14; 9], C[23; 6]. (use y = ax2+bx+c)
- Line
Line p passing through A[-10, 6] and has direction vector v=(3, 2). Is point B[7, 30] on the line p?
- Intersection 3486
There is a point A [-2; -4] in the rectangular coordinate system and a point S [0; -2]. Determine the coordinates of points B, C, and D so that ABCD is a square and S is the intersection of their diagonals.
- On a line
On a line p : 3 x - 4 y - 3 = 0, determine the point C equidistant from points A[4, 4] and B[7, 1].
- Prove
Prove that k1 and k2 are the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x2+y2+2x+4y+1=0 k2: x2+y2-8x+6y+9=0
- The slope
Find the slope of the line that passes through the following two points: (-3, 16) and (-5, 30) Give your answer as a number, rounded to the nearest tenth, if necessary.
- Equation 2604
The given triangle is ABC: A [-3; -1] B [5; 3] C [1; 5] Write the equation of the line that passes through the vertex C parallel to the side AB.
- Larger perimeter
There are a square and a circle that passes through two adjacent vertices of the square (end points of side a) and the center of the opposite side (c). Which of the plane shape has a larger perimeter?
- Line
Straight-line passing through points A [-3; 22] and B [33; -2]. Determine the total number of points of the line in which both coordinates are positive integers.
- Sphere equation
Obtain the equation of sphere its centre on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).