# Hyperbola

Find the equation of hyperbola that passes through the point M [30; 24] and has focal points at F1 [0; 4 sqrt 6], F2 [0; -4 sqrt 6].

**Result****Showing 0 comments:**

Tips to related online calculators

Looking for help with calculating arithmetic mean?

For Basic calculations in analytic geometry is helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.

Looking for a statistical calculator?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

For Basic calculations in analytic geometry is helpful line slope calculator. From coordinates of two points in the plane it calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of segment, intersections the coordinate axes etc.

Looking for a statistical calculator?

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Sides of right angled triangle

One leg is 1 m shorter than the hypotenuse, and the second leg is 2 m shorter than the hypotenuse. Find the lengths of all sides of the right-angled triangle. - Touch x-axis

Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis. - Prove

Prove that k1 and k2 is the equations of two circles. Find the equation of the line that passes through the centers of these circles. k1: x^{2}+y^{2}+2x+4y+1=0 k2: x^{2}+y^{2}-8x+6y+9=0 - Right triangle from axes

A line segment has its ends on the coordinate axes and forms with them a triangle of area equal to 36 square units. The segment passes through the point ( 5,2). What is the slope of the line segment? - On line

On line p: x = 4 + t, y = 3 + 2t, t is R, find point C, which has the same distance from points A [1,2] and B [-1,0]. - Three points 2

The three points A(3, 8), B(6, 2) and C(10, 2). The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D. - Secret treasure

Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure. - Find the 3

Find the distance and mid-point between A(1,2) and B(5,5). - Cuboid

Cuboid with edge a=6 cm and body diagonal u=31 cm has volume V=900 cm^{3}. Calculate the length of the other edges. - Circle

Write the equation of a circle that passes through the point [0,6] and touch the X-axis point [5,0]: ? - Three altitudes

A triangle with altitudes 4; 5 and 6 cm is given. Calculate the lengths of all medians and all sides in a triangle. - Points on circle

In the Cartesian coordinate system with the origin O is a sketched circle k /O; r=2 cm/. Write all the points that lie on a circle k and whose coordinates are integers. Write all the points that lie on the circle I / O; r=5 cm / and whose coordinates are - MO SK/CZ Z9–I–3

John had the ball that rolled into the pool and it swam in the water. Its highest point was 2 cm above the surface. Diameter of circle that marked the water level on the surface of the ball was 8 cm. Determine the diameter of John ball. - Conical area

A right angled triangle has sides a=12 and b=19 in right angle. The hypotenuse is c. If the triangle rotates on the c side as axis, find the volume and surface area of conical area created by this rotation. - Center of line segment

Calculate the distance of the point X [1,3] from the center of the line segment x = 2-6t, y = 1-4t ; t is . - Euclid theorems

Calculate the sides of a right triangle if leg a = 6 cm and a section of the hypotenuse, which is located adjacent the second leg b is 5cm. - Solid cuboid

A solid cuboid has a volume of 40 cm^{3}. The cuboid has a total surface area of 100 cm squared. One edge of the cuboid has length 2 cm. Find the length of a diagonal of the cuboid. Give your answer correct to 3 sig. Fig.