The area of a shape of triangle problems - page 29 of 38
Number of problems found: 759
- Deviation 4905
The flower bed has the shape of a regular 4-sided pyramid. The edge of the lower plinth is 10 m, and the upper plinth is 9 m. The deviation of the side wall from the base is 45 degrees. How many plantings should be purchased if 90 are needed to plant 1 sq
- Hexagon cut pyramid
Calculate the volume of a regular 6-sided cut pyramid if the bottom edge is 30 cm, the top edge is 12 cm, and the side edge length is 41 cm.
- Calculate 82567
The volume of a cuboid with a square base is 64 cm3, and the body diagonal deviation from the base's plane is 45 degrees. Calculate its surface area.
- Perpendicular 79804
A perpendicular hexagonal prism was created by machining a cube with an edge length of 8 cm. The base of the prism is created from the square wall of the original cube by separating 4 identical right triangles with overhangs of lengths 3cm and 4cm. The he
- Six-sided 44151
The parasol has the shape of the shell of a regular six-sided pyramid, whose base edge is a=6dm and height v=25cm. How much fabric is needed to make a parasol if we count 10% for joints and waste?
- Diameter 33361
The roof of the castle tower has the shape of a cone with a base diameter of 12 m and a height of 8 m. How many euros will we pay to cover the roof if 1m of square roofing costs 3.5 euros?
- Four-sided 7833
The tower has the shape of a regular four-sided pyramid with a base edge of 0.8 m. The height of the tower is 1.2 meters. How many square meters of sheet metal is needed for coverage if we count eight percent for joints and overlap?
- Triangular prism
The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism.
- Octagonal tank
The tank has the shape of a regular octagonal prism without an upper base. The base edge has a = 3m, and the side edge b = 6m. How much metal sheet is needed to build the tank? Do not think about losses or sheet thickness.
- Prism - box
The prism's base is a rectangle with a side of 7.5 cm and 12.5 cm diagonal. The volume of the prism is V = 0.9 dm³. Calculate the surface of the prism.
- Tent
A pyramid-shaped tent has a base square with a side length of 2 m and a height of 1.7 m. How many meters of canvas is needed to make it if we should add 10% for waste?
- Triangular prism
The plane passing through the edge AB and the center of segment CC' of regular triangular prism ABCA'B'C' has an angle with base 30 degrees, |AB| = 15 cm. Calculate the volume of the prism.
- Four-sided 27601
The house's roof has the shape of a regular four-sided pyramid 4 m high with a base edge of 100 dm. We consider 30% of the roofing in addition to the overlap. Calculate how much m² of roofing is needed to cover the roof.
- Wooden prism
Find the weight of a regular wooden triangular prism with a height equal to the base's perimeter and a figure inscribed in a circle with a radius of 6.M cm, where M is the month of your birth. The density of oak is 680 kg/m³.
- 9-gon pyramid
Calculate a nine-sided pyramid's volume and surface, the base of which can be inscribed with a circle with radius ρ = 7.2 cm and whose side edge s = 10.9 cm.
- The bus stop
The bus stop waiting room has the shape of a regular quadrilateral pyramid 4 m high with a 5 m base edge. Calculate how much m² roofing is required to cover the sheathing of three walls, taking 40% of the additional coverage.
- Base of prism
The base of the perpendicular prism is a rectangular triangle whose legs lengths are at a 3:4 ratio. The height of the prism is 2cm smaller than the larger base leg. Determine the volume of the prism if its surface is 468 cm².
- Dimensions of a fabric
How many m² of fabric is needed to make a tent of a regular 3-sided prism if it is necessary to count on a 2% reserve of fabric? Dimensions - 2m 1.6m and height 1.4m
- Quadrangular pyramid
Calculate the surface area and volume of a regular quadrangular pyramid: sides of bases (bottom, top): a1 = 18 cm, a2 = 6cm angle α = 60 ° (Angle α is the angle between the sidewall and the base plane.) S =? , V =?
Do you have unsolved problem that you need help? Ask a question, and we will try to solve it. Solving math problems.