# Cone A2V

Surface of cone in the plane is a circular arc with central angle of 126° and area 415 cm

Calculate the volume of a cone.

^{2}.Calculate the volume of a cone.

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Need help calculate sum, simplify or multiply fractions? Try our fraction calculator.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Triangular prism

The base of the perpendicular triangular prism is a rectangular triangle with a hypotenuse of 10 cm and one leg of 8 cm. The prism height is 75% of the perimeter of the base. Calculate the volume and surface of the prism. - Cone side

Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side. - Axial section of the cone

The axial section of the cone is an isosceles triangle in which the ratio of cone diameter to cone side is 2: 3. Calculate its volume if you know its area is 314 cm square. - Four sided prism

Calculate the volume and surface area of a regular quadrangular prism whose height is 28.6cm and the body diagonal forms a 50 degree angle with the base plane. - Angle of deviation

The surface of the rotating cone is 30 cm^{2}(with circle base), its surface area is 20 cm^{2}. Calculate the deviation of the side of this cone from the plane of the base. - Lateral surface area

The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm. - The diagram 2

The diagram shows a cone with slant height 10.5cm. If the curved surface area of the cone is 115.5 cm^{2}. Calculate correct to 3 significant figures: *Base Radius *Height *Volume of the cone - 9-gon pyramid

Calculate the volume and the surface of a nine-sided pyramid, the base of which can be inscribed with a circle with radius ρ = 7.2 cm and whose side edge s = 10.9 cm. - Cone

Circular cone of height 15 cm and volume 5699 cm^{3}is at one-third of the height (measured from the bottom) cut by a plane parallel to the base. Calculate the radius and circumference of the circular cut. - The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m^{2}of cloth we need to make the tent if we have to add 7% of the seams? How many m^{3}of air will be in the tent? - Castle tower

The castle tower has a cone-shaped roof with a diameter of 10 meters and a height of 8 meters. Calculate how much m² of coverage is needed to cover it if we must add one-third for the overlap. - Sphere parts, segment

A sphere with a diameter of 20.6 cm, the cut is a circle with a diameter of 16.2 cm. .What are the volume of the segment and the surface of the segment? - Surface of the cone

Calculate the surface of the cone if its height is 8 cm and the volume is 301.44 cm^{3}. - Pyramid 8

Calculate the volume and the surface area of a regular quadrangular pyramid with the base side 9 cm and side wall with the base has an angle 75°. - Pyramid in cube

In a cube with edge 12 dm long we have inscribed pyramid with the apex at the center of the upper wall of the cube. Calculate the volume and surface area of the pyramid. - Tetrahedral pyramid

Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´. - Sphere in cone

A sphere is inscribed in the cone (the intersection of their boundaries consists of a circle and one point). The ratio of the surface of the ball and the contents of the base is 4: 3. A plane passing through the axis of a cone cuts the cone in an isoscele